Notes on Number Theory and Discrete Mathematics

Print ISSN 1310-5132, Online ISSN 2367-8275

2022, Volume 28, Number 2, Pages 376-379

DOI: 10.7546/nntdm.2022.28.2.376-379

On certain equations and inequalities involving the arithmetical functions arphi(n) and d(n)

József Sándor¹ and Saunak Bhattacharjee²

¹ Babeş-Bolyai University, Department of Mathematics Cluj-Napoca, Romania

e-mail: jsandor@math.ubbcluj.ro

² Indian Institute of Science Education and Research Tirupati, India

e-mail: saunakbhattacharjee@students.iisertirupati.ac.in

Received: 10 January 2022 **Accepted:** 9 June 2022 **Revised:** 27 May 2022 **Online First:** 14 June 2022

Abstract: By using the results and methods of [1], we will study the equation $\varphi(n) + d(n) = \frac{n}{2}$ and the related inequalities. The equation $\varphi(n) + d^2(n) = 2n$ will be solved, too.

Keywords: Arithmetic functions, Inequalities.

2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let $\varphi(n)$ and d(n) denote Euler's totient function and the number of divisors function, respectively. It is well-known that $\varphi(1)=d(1)=1$ and for $n=p_1^{a_1}\dots p_r^{a_r}$ (prime factorization of n>1) one has

$$\varphi(n) = p_1^{a_1 - 1} \cdots p_r^{a_r - 1} \cdots (p_1 - 1) \cdots (p_r - 1)$$
 and $d(n) = (a_1 + 1) \cdots (a_r + 1)$ (1)

with p_i $(i=1,2,\ldots,r)$ distinct primes and a_i $(i=1,2,\ldots r)$ positive integers. In paper [1], we have determined the solutions of equation $\varphi(n)+d(n)=n$, and proved certain related inequalities.

The aim of this note is to study certain new equations, the first one being

$$\varphi(n) + d(n) = \frac{n}{2} \tag{2}$$

and the related inequalities. Our methods will be based on some methods and results of [1], as well as certain other inequalities, combined with computer computations.

2 Main results

First we state some auxiliary results. The first one is proved in [1]:

Lemma 1. For all odd and composite integer M one has

$$\varphi(M) + d(M) \le M \tag{3}$$

with equality only for M = 9.

The following inequality was first proved by W. Sierpiński [4]:

Lemma 2. If M is composite, then

$$\varphi(M) \le M - \sqrt{M}.\tag{4}$$

The next inequality can be found in [3]:

Lemma 3. For any integer $n \ge 1$ one has

$$d(n) < 4 \cdot \sqrt[3]{n}. \tag{5}$$

The main result of this paper is contained in:

Theorem 1. The only solution of equation (2) is n = 72. If n is even and not of the form 2^k $(k \ge 1)$; or $2^m \cdot p$ (m = 1, 2, 3, 4) p odd prime; or n = 18, 30, 36, 50, then one has

$$\varphi(n) + d(n) < \frac{n}{2}. (6)$$

If n even is of the form 2^k or $2^m \cdot p$ (m = 1, 2, 3, 4), p prime or n = 18, 30, 36, 50, then one has

$$\varphi(n) + d(n) > \frac{n}{2}.\tag{7}$$

Proof. First remark that if $n=2^k$, then $\varphi(n)+d(n)=2^{k-1}+k+1>2^{k-1}=\frac{n}{2}$. Let now $n=2^k\cdot M$, where M>1 is composite and odd. Then we can write:

$$\varphi(n) + d(n) = 2^{k+1} \cdot \varphi(M) + (k+1)d(M),$$

as φ and d are multiplicative functions. Now, remark that for all $k \geq 3$ one has the inequality $2^{k-1} \geq k+1$; with equality only for k=3. Thus, by using this inequality, combined with Lemma 1, we get

$$\varphi(n) + d(n) \le 2^{k-1} \cdot [\varphi(M) + d(M)] \le 2^{k-1} \cdot M = \frac{n}{2}.$$

There is equality here only for k=3 and M=9, thus $n=2^3\cdot 9=72$ is a solution of equation (2).

Now, let $n = 2^k \cdot M$ with $k \in \{1, 2\}$. If $n = 2 \cdot M$, then

$$\varphi(n) + d(n) = \varphi(M) + 2d(M) < M - \sqrt{M} + 8 \cdot \sqrt[3]{M},$$

by Lemmas 2 and 3. Thus, for $M-\sqrt{M}+8\cdot\sqrt[3]{M}<\frac{n}{2}=M$ we have $\varphi(n)+d(n)<\frac{n}{2}$. The above inequality is satisfied only if $8\cdot\sqrt[3]{M}<\sqrt{M}$, i.e., $M>8^6=262144$. A computer verification shows that the only values $n=2\cdot M$, with M<262144 for which $\varphi(n)+d(n)<\frac{n}{2}$ are $n\neq 18,30,50$ in which cases the inequality is reversed. Also, there is no any solution to (2) for these values.

Let now $n = 4 \cdot M$. Now, by the same argument as above,

$$\varphi(n) + d(n) = 2\varphi(M) + 3d(M) < \frac{n}{2} = 2M$$

is satisfied if $2 \cdot (M - \sqrt{M}) + 12 \cdot \sqrt[3]{M} < 2M$, i.e., $6\sqrt[3]{M} < \sqrt{M}$, or $M > 6^6 = 46656$. A computer verification shows again that for $M \le 46656$ there is no solution to (2) and that for all $n \ne 36$ one has $\varphi(n) = d(n) < \frac{n}{2}$ for these values.

Let now $n = 2^k \cdot p$, where p is an odd prime. Then

$$\varphi(n) + d(n) = 2^{k-1} \cdot (p-1) + 2 \cdot (k+1) \le 2^{k-1} \cdot p = \frac{n}{2} \Leftrightarrow 2 \cdot (k+1) \le 2^{k-1}$$

or $k+1 \le 2^{k-2}$. It is immediate that, this inequality is valid for all $k \ge 5$, with strict inequality. Thus, for these values of n one has $\varphi(n)+d(n)<\frac{n}{2}$. Finally, for n=2p,4p,8p,16p simple verifications show that in all cases we have the reverse inequality. For example, for n=8p one has

$$\varphi(n) + d(n) = 4(p-1) + 8 = 4p + 4 > 4p = \frac{n}{2}.$$

These prove the validity of inequalities (6) and (7) in the considered cases.

Remark 1. The fact that the equation (2) is not solvable for n = 2M (M > 1) follows without computer verifications. Indeed, in this case the equation becomes

$$\varphi(M) + 2d(M) = M \tag{8}$$

and as $M \geq 3$ it is known from (1) that $\varphi(M)$ is an even number. So, the left-hand side of equation (8) is even, while the right-hand side is odd; which is impossible.

Remark 2. The study of inequalities

$$\varphi(n) + d(n) < \frac{n}{2} \tag{9}$$

and

$$\varphi(n) + d(n) > \frac{n}{2} \tag{10}$$

for n odd, is a difficult open problem.

Relation (10) is satisfied clearly for any n=p = prime. On the oher hand, infinitely many solutions for (9) are provided, e.g., by $n=1155\cdot p$, where $p\geq 13$ is a prime. Indeed, as $1155=3\cdot 5\cdot 7\cdot 11$, one has $\varphi(n)=2\cdot 4\cdot 6\cdot 10\cdot (p-1)=480(p-1)$, and the inequality $480\cdot (p-1)+32<\frac{1155}{2}\cdot p$ holds true, as it becomes 195p>-896, which is trivially true.

Remark 3. Other related equations and inequalities can be found in the recent book [2].

Remark 4. In [1] it was shown that only a verification is necessary for even n < 16 for the even solutions of $\varphi(n) + d(n) = n$. It was stated that only n = 8 is acceptable. But n = 6 is acceptable, too; so that we make a correction here, namely that all solutions to the equation are n = 6, 8 and 9.

Remark 5. By the methods of [1] we can study also the equation

$$\varphi(n) + d^2(n) = 2n. \tag{11}$$

Clearly if n=p is prime, then p-1+4=2p only if p=3. If n is composite, and $n\geq 1262$, then by $d(n)<\sqrt{n}$ (see [1]) and $\varphi(n)\leq n-\sqrt{n}$ we get $\varphi(n)+d^2(n)<2n-\sqrt{n}<2n$, so for $n\leq 1261$ a computer verification is necessary to study (11). We get the following:

Theorem 2. All solutions to equation (11) are n = 3, 10, 40, 84.

In a forthcoming paper, more similar equations involving $\varphi(n)$ and d(n) will be studied.

References

- [1] Sándor, J. (2020). On the equation $\varphi(n) + d(n) = n$ and related inequalities. *Notes on Number Theory and Discrete Mathematics*, 26(3), 1–4.
- [2] Sándor, J., & Atanassov, K. T. (2021). *Arithmetic Functions*. Nova Science Publishers, New York.
- [3] Sándor, J., & Kovács, L. (2009). An inequality for the number of divisors. *Octogon Mathematical Magazine*, 17(2), 746–749.
- [4] Sándor, J., Mitrinović, D. S., & Crstici, B. (2005). *Handbook of Number Theory I.* Springer.