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Abstract: In this paper, we define the Hadamard-type k-step Pell sequence by using the
Hadamard-type product of characteristic polynomials of the Pell sequence and the k-step Pell
sequence. Also, we derive the generating matrices for these sequences, and then we obtain
relationships between the Hadamard-type k-step Pell sequences and these generating matrices.
Furthermore, we produce the Binet formula for the Hadamard-type k-step Pell numbers for the
case that k is odd integers and k ≥ 3. Finally, we derive some properties of the Hadamard-type
k-step Pell sequences such as the combinatorial representation, the generating function, and the
exponential representation by using its generating matrix.
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1 Introduction

It is well-known that Pell sequence is defined by the following equation:

Pn+1 = 2Pn + Pn−1

for n > 0, where P0 = 0, P1 = 1.
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Kılıç and Tascı [11] defined k sequences of the generalized order-k Pell numbers as shown:

P i
n = 2P i

n−1 + P i
n−2 + · · ·+ P i

n−k

for n > 0 and 1 ≤ i ≤ k, with initial conditions

P i
n =

{
1, if n = 1− i,
0, otherwise,

1− k ≤ n ≤ 0,

where P i
n is the n-th term of the i-th sequence.

It is clear that the characteristic polynomials of Pell sequence and the generalized order-k Pell
sequence are P (x) = x2 − 2x− 1 and Pk (x) = xk − 2xk−1 − xk−2 − · · · − 1, respectively.

Aküzüm and Deveci [1] defined the Hadamard-type product of polynomials f and g as follows:

f(x) ∗ g(x) =
∞∑
i=0

(ai ∗ bi)xi, where ai ∗ bi =

{
aibi, if aibi 6= 0

ai + bi, if aibi = 0
,

such that f(x) = amx
m+am−1x

m−1+· · ·+a1x+a0 and g(x) = bnx
n+bn−1x

n−1+· · ·+b1x+b0.
Suppose that the (n+ k)th term of a sequence is defined recursively by a linear combination

of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [10], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

A = [ai,j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1

c0 c1 c2 · · · ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


for n ≥ 0.

The study of linear and recurrent sequences has been known for a long time and miscellaneous
properties of these sequences have been studied by some authors; see, for example [2,5–9,14–16].
In [1] Akuzum and Deveci defined the Hadamard-type product of two polynomials and then
they obtain the Hadamard-type k-step Fibonacci sequence by the aid of this the Hadamard-type
product. In this paper, we define the Hadamard-type k-step Pell sequence. Then we obtain the
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Binet formula for the Hadamard-type k-step Pell numbers for the case that k is odd integers and
k ≥ 3. Also, we give the permanental representations, the determinantal representations, the
combinatorial representations, the generating function, the exponential representation, and the
sums of the Hadamard-type k-step Pell numbers.

2 The Hadamard-type k-step Pell sequences

We define the Hadamard-type k-step Pell sequence by using Hadamard-type product of the
characteristic polynomials of Pell sequence and the generalized order-k Pell sequence as shown:

hkn+k = 2hkn+k−1 + hkn+k−2 + · · ·+ hkn+2 − 2hkn+1 − hkn (1)

for the integers n ≥ 0 and k ≥ 3, with initial constants hk0 = hk1 = · · · = hkk−2 = 0 and hkk−1 = 1.
By (1), we can write the generating matrix for the Hadamard-type k-step Pell sequence as

follows:

Hp
k =



2 1 1 · · · 1 −2 −1
1 0 0 · · · 0 0 0

0 1 0 0 · · · 0 0

0 0 1 0 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · 0 0 1 0 0

0 0 · · · 0 0 1 0


k×k

.

The matrix Hp
k is said to be a Hadamard-type k-Pell matrix.

By induction on n, we get
(i) . For k = 3,

(Hp
3 )

n =

 h3n+2 −2h3n+1 − h3n −h3n+1

h3n+1 −2h3n − h3n−1 −h3n
h3n −2h3n−1 − h3n−2 −h3n−1

 ,
(ii) . For k = 4,

(Hp
4 )

n =


h4n+3 h4n+4 − 2h4n+3 −2h4n+2 − h4n+1 −h4n+2

h4n+2 h4n+3 − 2h4n+2 −2h4n+1 − h4n −h4n+1

h4n+1 h4n+2 − 2h4n+1 −2h4n − h4n−1 −h4n
h4n h4n+1 − 2h4n −2h4n−1 − h4n−2 −h4n−1

 ,
(iii) . For k ≥ 5,

(Hp
k)

n =


hkn+k−1 hkn+k − 2hkn+k−1 −2hkn+k−2 − hkn+k−3 −hkn+k−2
hkn+k−2 hkn+k−1 − 2hkn+k−2 −2hkn+k−3 − hkn+k−4 −hkn+k−3

...
... Hp∗

k

...
...

hkn+1 hkn+2 − 2hkn+1 −2hkn − hkn−1 −hkn
hkn hkn+1 − 2hkn −2hkn−1 − hkn−2 −hkn−1

 , (2)
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where Hp∗
k is a (k)× (k − 4) matrix as follows:

hk
n+k−2 + hk

n+k−3 + · · ·+ hk
n+3 − 2hk

n+2 − hk
n+1 hk

n+k−2 + hk
n+k−3 + · · ·+ hk

n+4 − 2hk
n+3 − hk

n+2 · · ·
hk
n+k−3 + hk

n+k−4 + · · ·+ hk
n+2 − 2hk

n+1 − hk
n hk

n+k−3 + hk
n+k−4 + · · ·+ hk

n+3 − 2hk
n+2 − hk

n+1 · · ·
...

...
. . .

hk
n + hk

n−1 + · · ·+ hk
n−k+5 − 2hk

n−k+4 − hk
n−k+3 hk

n + hk
n−1 + · · ·+ hk

n−k+6 − 2hk
n−k+5 − hk

n−k+4 · · ·
hk
n−1 + hk

n−2 + · · ·+ hk
n−k+4 − 2hk

n−k+3 − hk
n−k+2 hk

n−1 + hk
n−2 + · · ·+ hk

n−k+5 − 2hk
n−k+4 − hk

n−k+3 · · ·

hk
n+k−2 − 2hk

n+k−3 − hk
n+k−4

hk
n+k−3 − 2hk

n+k−4 − hk
n+k−5

...
hk
n − 2hk

n−1 − hk
n−2

hk
n−1 − 2hk

n−2 − hk
n−3


for n ≥ k − 3. Also, It is easy to see that detHp

k = (−1)k.
We consider the Binet formula for the Hadamard-type k-step Pell sequence with the following

theorem.

Lemma 2.1. Let k be an odd integer such that k ≥ 3. The characteristic equation of the
Hadamard-
type k-step Pell sequence xk − 2xk−1 − xk−2 − · · · − x2 + 2x + 1 = 0 does not have multiple
roots.

Proof. Let f (x) = xk − 2xk−1 − xk−2 − · · · − x2 + 2x + 1. For k = 3, we reach the equation
x3 − 2x2 + 2x+ 1. Then, we obtain the roots of this equation as follows:

x1 = 1.1766− 1.2028 i,

x2 = 1.1766 + 1.2028 i, and

x3 = −0.35321.

Thus, it is easily seen that the equation f(x) = 0 does not have multiple roots for k = 3.
Now, we consider the proof for k ≥ 5 in which case k is an odd integer number. Suppose that

g (x) = (x− 1) f (x) = xk+1 − 3xk + xk−1 + 3x2 − x− 1. So, we obtain

xk =
−3x3 + x2 + x

x2 − 3x+ 1
. (3)

Moreover, it can be written g′ (x) = (k + 1)xk − 3kxk−1 + (k − 1)xk−2 + 6x− 1 and thus, we
get

xk =
−6x3 + x2

(k + 1)x2 − 3kx+ k − 1
. (4)

From (3) and (4), we reach the equation

k = 1 +
8x3 − 8x2 + 4x

−3x4 + 10x3 − 5x2 − 2x+ 1

Using an appropriate software such as Wolfram Mathematica 10.0 [17], we obtain that there
is no solution for k ≥ 5. Since k are odd integers such that k ≥ 5, it is a contradiction. Therefore,
the equation f(x) = 0 does not have multiple roots.
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If x1, x2, . . . , xk are roots of the equation xk − 2xk−1 − xk−2 − · · · − x2 + 2x + 1, then by
Lemma 2.1, it is known that x1, x2, . . . , xk are distinct. Let V k be k × k Vandermonde matrices
as follows:

V k =


(x1)

k−1 (x2)
k−1 · · · (xk)

k−1

(x1)
k−2 (x2)

k−2 · · · (xk)
k−2

...
... . . . ...

x1 x2 · · · xk
1 1 · · · 1

 .
Let

Rk (i, j) =


xn+k−i
1

xn+k−i
2

...
xn+k−i
k


and suppose that V k (i, j) is a k× k matrix obtained from V k by replacing the j-th column of V k

by Rk (i, j).

Theorem 2.1. Let k be an odd integer such that k ≥ 3 and let (Hp
k)

n =
[
hp,k,ni,j

]
, then

hp,k,ni,j =
detV k (i, j)

detV k
,

for n ≥ 0 .

Proof. Since x1, x2, . . . , xk are distinct, the matrix Hp
k is diagonalizable. Then, Hp

kV
k = V kSk,

where Sk = (x1, x2, . . . , xk). Since V k is invertible, we can write
(
V k
)−1

Hp
kV

k = Sk. Then,
the matrix Hp

k is similar to Sk and so (Hp
k)

n V k = V k
(
Sk
)n. We can now easily establish the

following linear system of equations:
hp,k,ni,1 xk−11 + hp,k,ni,2 xk−21 + · · ·+ hp,k,ni,k = xn+k−i

1

hp,k,ni,1 xk−12 + hp,k,ni,2 xk−22 + · · ·+ hp,k,ni,k = xn+k−i
2

...
hp,k,ni,1 xk−1k + hp,k,ni,2 xk−2k + · · ·+ hp,k,ni,k = xn+k−i

k

Therefore, for each i, j = 1, 2, . . . , k, we obtain

hp,k,ni,j =
detV k (i, j)

detV k
.

The following Corollary gives the Binet formula for the Hadamard-type k-step Pell numbers.

Corollary 2.1. Let k be an odd integer such that k ≥ 3 and let hkn be the n-th the Hadamard-type
k-step Pell number, then

hkn =
detV k (k, 1)

detV k
= −detV k (k − 1, k)

detV k

for n ≥ 0.
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Now we consider the permanental representations of the Hadamard-type k-step Pell numbers.

Definition 2.1. A u× v real matrix M = [mi,j] is called a contractible matrix in the k-th column
(respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that x1, x2, . . . , xu are row vectors of the matrix M. If M is contractible in the k-th
column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1) matrix Mij:k obtained
fromM by replacing the i-th row withmi,kxj+mj,kxi and deleting the j-th row. The k-th column
is called the contraction in the k-th column relative to the i-th row and the j-th row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
α > 1 and N is a contraction of M.

Let r ≥ k (k ≥ 3) be an integer and let M r,k =
[
mr,k

i,j

]
be the r × r super-diagonal matrix,

defined by

mr,k
i,j =



1,

if i = t and j = t+ 1 for 1 ≤ t ≤ r − 1,
i = t and j = t+ 2 for 1 ≤ t ≤ r − 2,

...
i = t and j = t+ k − 3 for 1 ≤ t ≤ r − k + 3, and
i = t and j = t− 1 for 2 ≤ t ≤ r,

2, if i = t and j = t for 1 ≤ t ≤ r,

−2, if i = t and j = t+ k − 2 for 1 ≤ t ≤ r − k + 2,

−1, if i = t and j = t+ k − 1 for 1 ≤ t ≤ r − k + 1,

0, otherwise.

Then we have the following Theorem.

Theorem 2.2. For r ≥ k and k ≥ 3,

perM r,k = hkr+k−1

Proof. We prove this by mathematical induction. Let the equation be hold for r > k, then we
show that the equation holds for r + 1. If we expand the perM r,k by the Laplace expansion of
permanent according to the first row, then we obtain

perM r+1,k = 2perM r,k + perM r−1,k + · · ·+ perM r−k+3,k − 2 perM r−k+2,k − perM r−k+1,k.

Since perM r,k = hkr+k−1, perM
r−1,k = hkr+k−2, . . . , perM

r−k+3,k = hkr+2, perM
r−k+2,k =

hkr+1 and perM r−k+1,k = hkr , it is easy to see that perM r+1,k = hkr+k. Thus, the proof is
complete.
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Let r > k and let N r,k =
[
nr,k
i,j

]
be the r × r matrix, defined by

nr,k
i,j =



1

if i = t and j = t+ 1 for 1 ≤ t ≤ r − 2,
i = t and j = t+ 2 for 1 ≤ t ≤ r − 3,

...
i = t and j = t+ k − 3 for 1 ≤ t ≤ r − k + 2, and
i = t and j = t− 1 for 2 ≤ t ≤ r,

2 if i = t and j = t for 1 ≤ t ≤ r − 1,

−2 if i = t and j = t+ k − 2 for 1 ≤ t ≤ r − k + 1,

−1 if i = t and j = t+ k − 1 for 1 ≤ t ≤ r − k + 1,

0 otherwise.

Assume that the r × r matrix Br,k =
[
br,ki,j

]
is defined by

Br,k =

(r−k)-th
↓

1 · · · 1 0 · · · 0

1

0 N r−1,k

...
0

 .
Then we have the following interesting results.

Theorem 2.3. (i) For r > k,
perN r,k = −hkr−1.

(ii) For r > k + 1,

perBr,k = −
r−2∑
i=0

hki .

Proof. (i) We will use the induction method on r. Assume that the equation holds for r > k, then
we show that the equation holds for r+1. If we expand the perN r,k by the Laplace expansion of
permanent according to the first row, then we obtain

perN r+1,k = 2perN r,k + perN r−1,k + · · ·+ perN r−k+3,k − 2 perN r−k+2,k − perN r−k+1,k.

Also, since perN r,k = hkr−1, perN
r−1,k = hkr−2, . . . , perN

r−k+3,k = hkr−k+2, perN
r−k+2,k =

hkr−k+1 and perN r−k+1,k = hkr−k, we easily obtain that perN r+1,k = hkr . So, the proof of (i) is
complete.

(ii) . If we expand the perBr,k with respect to the first row, we can write

perBr,k = perBr−1,k + perN r−1,k.

From Theorem 2.2 and Theorem 2.3. (i) and induction on r, the proof follows directly.

Let the notation M ◦ K denote the Hadamard product of M and K. A matrix M is called
convertible if there is an u× u (1,−1)-matrix K such that perM = det (M ◦K).
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Let r > k + 1 and let Q be the r × r matrix, defined by

Q =



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
... . . . . . . . . . . . . ...
1 · · · 1 −1 1 1

1 · · · 1 1 −1 1


.

As an immediate consequence, we have the following.

Corollary 2.2. For r > k + 1,

det
(
M r,k ◦Q

)
= hkr+k−1,

det
(
N r,k ◦Q

)
= −hkr−1,

and

det
(
Br,k ◦Q

)
= −

r−2∑
i=0

hki .

Let C (c1, c2, . . . , cv) be a v × v companion matrix as follows:

C (c1, c2, . . . , cv) =


c1 c2 · · · cv
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0

 .
For more details see [12, 13].

Theorem 2.4. (Chen and Louck [4]) The (i, j) entry k
(u)
i,j (k1, k2, . . . , kv) in the matrix

Ku (k1, k2, . . . , kv) is given by the following formula:

k
(u)
i,j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
kt11 · · · ktvv , (5)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = u − i + j,(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the coefficients in (5) are defined to be 1

if u = i− j.

Then we have the following Corollary for the Hadamard-type k-step Pell numbers.

Corollary 2.3. Let hkn be the n-th the Hadamard-type k-step Pell number for k ≥ 3. Then
(i)

hkn =
∑

(t1,t2...,tk)

(
t1 + · · ·+ tk
t1, . . . , tk

)
2t1 (−2)tk−1 (−1)tk ,

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · ·+ (k) tk = n− k + 1.
(ii)

hkn = −
∑

(t1,t2...,tk)

tk
t1 + t2 + · · ·+ tk

×
(
t1 + · · ·+ tk
t1, . . . , tk

)
2t1 (−2)tk−1 (−1)tk ,

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · ·+ (k) tk = n+ 1.
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Proof. In Theorem 2.4, If we choose i = k and j = 1, for case (i) and i = k − 1, j = k, for case
(ii), then we can directly see the conclusions from (2).

It is easy to show that the generating function of the Hadamard-type k-step Pell numbers is as
follows:

gk (x) =
xk−1

1− 2x− x2 − · · · − xk−2 + 2xk−1 + xk
.

Then we can give an exponential representation for the Hadamard-type k-step Pell numbers
by the aid of the generating function with the following theorem.

Theorem 2.5. The Hadamard-type k-step Pell numbers have the following exponential
representation:

gk (x) = xk−1 exp

(
∞∑
i=1

(x)i

i

(
2 + x+ · · ·+ xk−3 − 2xk−2 − xk−1

)i)
,

where k ≥ 3.

Proof. It is clear that

ln
gk (x)

xk−1
= − ln

(
1− 2x− x2 − · · · − xk−2 + 2xk−1 + xk

)
.

Also, we have

− ln
(
1− 2x− x2 − · · · − xk−2 + 2xk−1 + xk

)
= −[−x

(
2 + x+ · · ·+ xk−3 − 2xk−2 − xk−1

)
−

1

2
x2
(
2 + x+ · · ·+ xk−3 − 2xk−2 − xk−1

)2
− · · · −

1

n
xn
(
2 + x+ · · ·+ xk−3 − 2xk−2 − xk−1

)n
− · · · ]

Therefore, we obtain

ln
gk (x)

xk−1
=
∞∑
i=1

(x)i

i

(
2 + x+ · · ·+ xk−3 − 2xk−2 − xk−1

)i
.

Thus we have the conclusion.

Now we give the sums of the Hadamard-type k-step Pell numbers.
Let

Sn =
n∑

i=0

hkn

for n ≥ 0 and k ≥ 3, and suppose that Lh
k is the (k + 1)× (k + 1) matrix, such that

Lh
k =


1 0 · · · 0

1

0 Hp
k

...
0

 .
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Then by the inductive argument, we write

(
Lh
k

)n
=


1 0 · · · 0

Sn+k−2

Sn+k−3 (Hp
k)

n

...
Sn−1

 .
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