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Abstract: In this paper, we define the Hadamard-type k-step Pell sequence by using the
Hadamard-type product of characteristic polynomials of the Pell sequence and the k-step Pell
sequence. Also, we derive the generating matrices for these sequences, and then we obtain
relationships between the Hadamard-type k-step Pell sequences and these generating matrices.
Furthermore, we produce the Binet formula for the Hadamard-type k-step Pell numbers for the
case that k is odd integers and £ > 3. Finally, we derive some properties of the Hadamard-type
k-step Pell sequences such as the combinatorial representation, the generating function, and the
exponential representation by using its generating matrix.
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1 Introduction

It is well-known that Pell sequence is defined by the following equation:
Pn+1 :2Pn+Pn—1

for n > 0, where F, =0, P, = 1.
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Kili¢ and Tasci [11] defined k sequences of the generalized order-%£ Pell numbers as shown:
Py =2P  + Pyt 4 By

forn > 0and 1 < ¢ < k, with initial conditions

Pi= 1, 1f”:‘1_2’ 1-k<n<o,
0, otherwise,

where P! is the n-th term of the i-th sequence.
It is clear that the characteristic polynomials of Pell sequence and the generalized order-£ Pell
sequence are P (r) = 22 — 2z — 1 and P, (z) = 2% — 22%~! — 2%72 — ... — 1, respectively.

Akiiziim and Deveci [1] defined the Hadamard-type product of polynomials f and g as follows:

{ a; bz s if a; bz 7& 0

f@)xg(z) =) (a;xb;) 2", where a; * a4+ by, it ab; =0

=0
such that f(2) = ap2™ +ap_12™ 4 - - +a1x+ag and g(x) = ba™+b, 12"+ +byz+b.

Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination
of the preceding £ terms:

ik = Colp + C1Gp41 + -+ + Ck—10p k-1

where cg,cq,...,cx_1 are real constants. In [10], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:
Let the matrix A be defined by

0O 1 0 0 0
0O 0 1 0 0
0 0 O 0 0
A= [ai’j]’“’f - Do ., : : ’
0 0 O 0 1
L o C1 C2 -+ Cr—2 Cg-1 |
then
Qo Qp,
An a1 _ &n.+1
Ap—1 Aptk—1
forn > 0.

The study of linear and recurrent sequences has been known for a long time and miscellaneous
properties of these sequences have been studied by some authors; see, for example [2,5-9,14-16].
In [1] Akuzum and Deveci defined the Hadamard-type product of two polynomials and then
they obtain the Hadamard-type k-step Fibonacci sequence by the aid of this the Hadamard-type
product. In this paper, we define the Hadamard-type k-step Pell sequence. Then we obtain the
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Binet formula for the Hadamard-type k-step Pell numbers for the case that £ is odd integers and
k > 3. Also, we give the permanental representations, the determinantal representations, the
combinatorial representations, the generating function, the exponential representation, and the
sums of the Hadamard-type k-step Pell numbers.

2 The Hadamard-type k-step Pell sequences

We define the Hadamard-type k-step Pell sequence by using Hadamard-type product of the
characteristic polynomials of Pell sequence and the generalized order-% Pell sequence as shown:

hfz—&-k = thwfk—l + h’]:L—&-k—Q +-t hfz+2 - 2hth - hﬁ (D
for the integers n > 0 and k > 3, with initial constants hf = h} = --- = hf , =0and hf_, = 1.
By (1), we can write the generating matrix for the Hadamard-type k-step Pell sequence as
follows: _ -
2 1 1 1 -2 -1
1 0 0 0 0 0
0 1 0 O 0 0
H=10 0 1 0 0 0
0 0 0 1 0 0
o o0 -~ 0 0 1 O
L Jd kxk
The matrix H; is said to be a Hadamard-type k-Pell matrix.
By induction on n, we get
(7). For k = 3,
hi+2 _2h§1+1 - h?z _h§1+1
(H3)" = | by =2hp—hoy =l |,
W 2 —hh, —hn
(i) . For k = 4,
hovs  hna =20 —2hn — by —hag
(Hf)n _ hi—i—Q hi—‘ri’) - 2hfz+2 _2h’i+1 - h‘frll _h';lH-l
Mo hogo =2l =2h —hn oy —hy
M gy —2h =2k —hn o, —hy
(i) . For k > 5,
[ ko1 P — 20 —2hy o~ ks —Pigks
Moo Piprer = 2R s —2hy s — hies s
(Hp)" = : : HP* : : , @
M RS, —2mE, T LS
W bk —ont oMk, —hE L, —hE, |
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where H" isa (k) x (k — 4) matrix as follows:

W o+ hE a4 e —2RE, — R W o+ hE gt hE L —2hE s — R,
ey g g+ g — 2Ry — D, A g T hE g+ R g —2RE , —hk

ol bl s = 2R =R s R R ey e = 2R s — Ry
b v+ hE g hE 2Rk b BE A+ RE R —2hk =R

k k k
hn+k72 - 2hn+k73 - hn+k74

k k k
hn+k—3 - 2hn+k’—4 - hn+k—5

hk —onk | _pk_,

n—1
hyi 1 = 2hy 5 — hii_g

for n > k — 3. Also, It is easy to see that det H? = (—1)".
We consider the Binet formula for the Hadamard-type k-step Pell sequence with the following
theorem.

Lemma 2.1. Let k be an odd integer such that k > 3. The characteristic equation of the
Hadamard-

type k-step Pell sequence x* — 221 — 2%=2 — ... — 22 4 22 + 1 = 0 does not have multiple
roots.
Proof. Let f (z) = 2% — 22" 1 —2F=2 — ... — 2% 4+ 22 + 1. For k = 3, we reach the equation

2% — 22% + 22 + 1. Then, we obtain the roots of this equation as follows:

71 = 1.1766 — 1.20284,
zo = 1.1766 4+ 1.20284, and
z3 = —0.3532L.

Thus, it is easily seen that the equation f(x) = 0 does not have multiple roots for k& = 3.
Now, we consider the proof for £ > 5 in which case £ is an odd integer number. Suppose that
g(x)=(x—1)f(z) =2 = 32F + 2*! + 322 — 2 — 1. So, we obtain
p o 3t at

v 2 —3x+1 3)

Moreover, it can be written ¢’ () = (k + 1) 2* — 3kz*~' + (k — 1) 22 + 62 — 1 and thus, we

get
i —62° + 2? @)
x¥ = .
(k+1)a?—3kz+k—1

From (3) and (4), we reach the equation

8x3 — 8x? + 4x

k=1
+—3I4+10x3—5m2—2x+1

Using an appropriate software such as Wolfram Mathematica 10.0 [17], we obtain that there
is no solution for &£ > 5. Since k are odd integers such that £ > 5, it is a contradiction. Therefore,
the equation f(x) = 0 does not have multiple roots. O
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If 21,2y, ..., are roots of the equation 2% — 2zF~1 — zF=2 —

- — 2% + 2z + 1, then by
Lemma 2.1, it is known that x, x5, . .

., xy, are distinct. Let V* be k x k Vandermonde matrices

as follows: _ _
(xl)k:—l (I’g)k_l L (Ik)k_l
(.Tl)k_Q (xQ)k—Z L (CC'k)k_Q
vh =
T T9 . T
Let
x?-i-k—z
n+k—i
. )
RF(ig)=| ~.
n+k—i
"

and suppose that VV* (i, j) is a k x k matrix obtained from V* by replacing the j-th column of V*
by R* (i, j).

Theorem 2.1. Let k be an odd integer such that k > 3 and let (H})" = [hfk"} , then

hpkn _ detvk (27])

b det VE ~’
forn>0.

Proof. Since z1,xo, ..

, z), are distinct, the matrix H? is diagonalizable. Then HEVE = VEGE,
where S* = (2, 25,..., 2

x1,). Since V* is invertible, we can write (V*)~ " HPVF = Sk Then,
the matrix H? is similar to S* and so (H?)" V% = V¥ (S%)"

. We can now easily establish the
following linear system of equations:

k k k
hp,nk1+hpnk2+ —i—hp’n—anrkl
hpvkn k 1_+_hp)k” k— 2+ +hp7kn xn+k_7f

- 2

p,k,n — pkn_k—2 p.k,n ntk—i
hl,]. h 2 xk +'..+hi,]€ —ZL’k

Therefore, for each i, j = 1,2, ..., k, we obtain

hp,k,n _ det Vk ('La j)

- —_— ]
) det Vk
The following Corollary gives the Binet formula for the Hadamard-type k-step Pell numbers.

Corollary 2.1. Let k be an odd integer such that k > 3 and let h* be the n-th the Hadamard-type
k-step Pell number, then

B det V¥ (k,1) _ det VE(k—1,k)
" detVE det Vk

forn > 0.
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Now we consider the permanental representations of the Hadamard-type k-step Pell numbers.

Definition 2.1. A u x v real matrix M = [m, ;| is called a contractible matrix in the k-th column

(respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that z1, xo, . . ., z, are row vectors of the matrix M. If M is contractible in the k-th
column such that m; , # 0, m;; # 0 and 7 # j, then the (v — 1) X (v — 1) matrix M,;.;, obtained
from M by replacing the i-th row with m; 2 ; +m; ,2; and deleting the j-th row. The k-th column
is called the contraction in the k-th column relative to the ¢-th row and the j-th row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
a > 1and N is a contraction of M.

Letr > k (k > 3) be an integer and let M™* = [m:ﬂ be the r x r super-diagonal matrix,
defined by

iftr=tandj=t+1forl <t <r—1,
t=tandj=t+2for1 <t <r—2,

t=tandj=t+k—3forl <t<r—Fk+3,and
rk t=tandj=t—1for2<t<r,
" 9. ifi=tand j=tforl <t<r,
—2, ifi=tand j=t+k—-2forl1 <t<r—Fk+2,

, ifi=tand j=t+k—1for1 <t<r—=~k+1,

(0, otherwise.
Then we have the following Theorem.

Theorem 2.2. Forr > k and k > 3,
per M"™" = hf+k71

Proof. We prove this by mathematical induction. Let the equation be hold for r» > £, then we
show that the equation holds for r 4 1. If we expand the per M"* by the Laplace expansion of
permanent according to the first row, then we obtain

per Mr+1,k —9 per Mnk + per Mr—l,k S per Mr—k:-i-?),k . 2per Mr—k+27k — per Mr—k-l—l,k.

Since per MT’k = hl:-&-k—la per MT_I’k = hf—«—k—% ..., Per MT_k+3’k = hf-ﬁ-Qa per Mr_k+27k =
hY,, and per M"FTLF — pk it is easy to see that per M"*H% = hF . Thus, the proof is
complete. ]
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Letr > k and let N™F = [n:ﬂ be the r x r matrix, defined by

ifit=tand j=t+1forl <t <r—2,
t=tandj=t+2forl <t <r—3,

t=tandj=t+k—3forl <t<r—Fk+2 and
ok t=tandj=t—1for2<t<r,

" 2 ifi—tand j—tforl <t<r—1,

—2 ifi=tand j=t+k—2forl1 <t<r—~k+1,

—1 ifi=tand j=t+k—1forl1 <t<r—~k+1,

(0 otherwise.

Assume that the r x r matrix B"* = [b:f } is defined by

_O -

Then we have the following interesting results.

Theorem 2.3. (i) Forr >k,

per N"F = —pF .
(17) Forr > k + 1,

r—2
per B™F = — Z hY.
i=0

Proof. (i) We will use the induction method on r. Assume that the equation holds for r > k, then
we show that the equation holds for r + 1. If we expand the per N by the Laplace expansion of
permanent according to the first row, then we obtain

per Nr-l—l,k: — 2p61‘ Nr,k + per Nr—l,k’ N per Nr—k+3,k . 2per Nr—k—i—Q,k — per Nr—k’-‘,—l,k:.

Also, since per N™* = hF_| per N"=bk = pk . per NTFFE = pk o per NTTRTEE —

h_ )., and per N""FLF — pF | Cwe easily obtain that per N™t1% = hF. So, the proof of (i) is
complete.

(i1) . If we expand the per B™* with respect to the first row, we can write
per B"* = per B"1F 4 per N""1*,

From Theorem 2.2 and Theorem 2.3. (i) and induction on r, the proof follows directly. O

Let the notation M o K denote the Hadamard product of M and K. A matrix M is called
convertible if there is an u X u (1, —1)-matrix K such that per M = det (M o K).
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Letr > k + 1 and let () be the r X r matrix, defined by

11 1 - 1 1
~1 1
1 -1

Q= .
1 1 -1 1 1
1 1 -1 1]

As an immediate consequence, we have the following.

Corollary 2.2. Forr >k + 1,
det (MT’k o Q) = h7]f+k717
det (N"% 0 Q) = —hi

r—1
and
r—2
det (B0 @) = =) hl.
i=0
Let C' (c1,¢a,...,¢,) be av X v companion matrix as follows:
1 Co e Gy
1 0 --- 0
C(cr,09,...,0) = _
0 1 0

For more details see [12, 13].
Theorem 2.4. (Chen and Louck [4]) The (i,j) entry kl(q;) (k1, k2, ..., ky) in the matrix
K" (ky,ka, ..., ky) is given by the following formula:

. Lot ety to 1,

klgl)(k‘hké)"'vkv): Z J+]+1+ - X o -

7 (t1.t t)tl+t2++tv t1,...,ty
1,025..5lv

)kik 5)

where the summation is over nonnegative integers satisfying t, + 2ty + -+ +vt, = u — 1 + J,

(t1+~--+ty) _ (tattto)!

T sa multinomial coefficient, and the coefficients in (5) are defined to be 1

t1,..to

ifu=1—7j.
Then we have the following Corollary for the Hadamard-type k-step Pell numbers.
Corollary 2.3. Let h® be the n-th the Hadamard-type k-step Pell number for k > 3. Then

g = X (" o e

t1,...,t
(t1,t2..tk) ’ ok

where the summation is over nonnegative integers satisfying t, +2ta +-- -+ (k) ty =n— k + 1.

R TI  — S A LR

(tl,tQ...,tk) tl +t2++tk‘ tl?"‘7tk‘

where the summation is over nonnegative integers satisfying t1 + 2to + -+ - + (k) ty = n + 1.
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Proof. In Theorem 2.4, If we choose i = k and j = 1, for case (i) and i = k — 1, j = k, for case
(71), then we can directly see the conclusions from (2). [

It is easy to show that the generating function of the Hadamard-type k-step Pell numbers is as

follows:
k-1

1—20— 22— — b2 4 2ph=1 4 ok
Then we can give an exponential representation for the Hadamard-type k-step Pell numbers

gk (z) =

by the aid of the generating function with the following theorem.

Theorem 2.5. The Hadamard-type k-step Pell numbers have the following exponential

representation:

where k > 3.

Proof. 1t is clear that

lng;]fxl) =—In(1-2z—a2*— - —2" 2+ 225" 4 25).
Also, we have
—ln(1—2x—$2—---—mk_2—|—2xk_1+xk): x(2+x—|— Y L L
%xz (2+I+ k73_2$k72_mk71>2_._'
%x” (2—1—3:—1—---4—93]“*3—237’“*2—37’“*1>n—--

Therefore, we obtain

kl Z(— R A Lt k)
X

Thus we have the conclusion. ]

Now we give the sums of the Hadamard-type k-step Pell numbers.

Let N
Sp=Y hf
1=0

forn > 0 and k > 3, and suppose that L} is the (k + 1) x (k + 1) matrix, such that




Then by the inductive argument, we write

1 0 - 0

Sn+k72
(LZ)” = | Sntk-3 (HE)"

Sn—l
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