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Abstract: We study equations of type σ(n) =
k + 1

k
·n + a, where a ∈ {0, 1, 2, 3}, where k

and n are positive integers, while σ(n) denotes the sum of divisors of n.
Keywords: Sum of divisors, Perfect numbers.
2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let σ(n) denote the sum of distinct positive divisors of n > 1. Let k ≥ 1 be a positive integer.
The equation

σ(n) =
k + 1

k
· n, (1)

where k = 1, has a long history in mathematics, as these are the famous perfect numbers n for
which σ(n) = 2n (see [5, 6]).

For k > 1, however, these are certain “rational perfect” numbers n. For k = p−1, with p ≥ 3

a prime, we have introduced Equation (1) in [3]. A similar equation, namely

σ(n) =
k + 1

k
· n+ 1 (2)

for k = 2 has been considered in our note [4].
In this paper we will solve completely these equations, as well as the following new ones:

σ(n) =
k + 1

k
· n+ 2, (3)

σ(n) =
k + 1

k
· n+ 3. (3’)
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2 Main results

The following auxiliary result will be used more times:

Lemma 1. σ(n) is a multiplicative function, i.e., σ(mn) = σ(m)σ(n) for all (m,n) = 1. One
has the inequality

σ(a · b) ≥ a · σ(b) (4)

with equality only for a = 1.

For a proof of (4), see our paper [1], as well as [2].

Lemma 2. Let x > 1 be a positive integer. Then

σ(x) = x+ 1 iff x ≥ 2 is a prime; (5)

σ(x) = x+ 2 is not solvable; (6)

σ(x) = x+ 3 iff x = 4. (7)

σ(x) = x+ 4 iff x = 9. (7’)

Proof. (5) is well-known and follows from σ(x) ≥ x+ 1, with equality only if x is a prime.
As σ(x) = (x+ 1) + 1 and 1 and x > 1 are distinct divisors of x, clearly (6) is not possible.
Writing (7) as σ(x) = x + 1 + 2, it follows that 2‖x, and there are no other divisors; so x = 2k;

and it is immediate that k = 2; so x = 4.

Writing (7’) as σ(x) = x+ 1 + 3, it follows in a similar manner that x = 9.

Theorem 1. If Equation (1) is solvable, then we must have n = k = p, where p is a prime
number.

Proof. As (k, k + 1) = 1 we must have n = multiple of k, i.e., n = k · A (A ≥ 1 integer). Thus
(1) becomes

σ(k · A) = (k + 1) · A. (8)

By applying inequality (4), one has σ(k · A) ≥ A · σ(k), with equality only for A = 1, so by (8)
we get σ(k) ≤ k + 1. By (5) we get that k = p = prime. As A = 1, we have n = p · 1 = p, and
the proof is complete.

Remark 1. Suppose that k = q − 1, where q ≥ 3 is a prime. On the basis of Theorem 1, the
equation

σ(n) =
q

q − 1
· n (9)

can be solved only if q − 1 = p is a prime. This is possible only if q = 3, p = 2, so the only
solution of the Equation (9) is n = 2. This offers a complete solution of equation from [3].

Theorem 2. If Equation (2) is solvable, then k must be a prime (k = p) and n = p2.

Proof. Equation (2) with n = k ·A (A ≥ 1) can be rewritten as σ(kA) = (k + 1) ·A+ 1. As by
(4) one has σ(kA) ≥ A · σ(k), we get that one must have

A · [σ(k)− (k + 1)] ≤ 1. (10)
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As σ(k)− (k + 1) ≥ 0 and A ≥ 1, inequality (10) can be true only if:

i) σ(k)− (k + 1) = 0 and A arbitrary;

ii) A = 1, σ(k)− (k + 1) = 1.

Remark that Case ii) is not possible by (6), so remains only Case i), when we get that k is prime,
and A is arbitrary. Let k = p, and write n = pa ·N (a ≥ 1, N ≥ 1) and (p,N) = 1.

As σ(n) = σ(pa)σ(N) =
pa+1 − 1

p− 1
·σ(N), Equation (2) can be rewritten as

p · (pa+1 − 1)σ(N) = (p2 − 1)pa ·N + p · (p− 1). (11)

Let σ(N) = N + T, where T ≥ 0 is an integer. Equation (11) can be rewritten as

N · (pa − p) + T · (pa+2 − p) = p2 − p. (12)

If a = 1, (12) is possible only if N = 1 and T = 0; thus n = 1, which is not possible as we
have assumed n > 1.

If a ≥ 2, (12) is possible only if N = 1, T = 0 and a = 2, so we get n = p2, and the theorem
is proved.

Remark 2. Particularly, when k = 2, we get that only solution of (2) is n = 4, proved in [4].

Theorem 3. Equation (3) is solvable only if n = k = 4.

Proof. As n = k · A (A ≥ 1), Equation (3) can be rewritten as

σ(kA) = (k + 1) · A+ 2. (13)

As σ(kA) ≥ Aσ(k), from (13) we get the inequality

A · [σ(k)− (k + 1)] ≤ 2. (14)

Logically, there are possible four distinct cases:

i) A arbitrary, σ(k)− (k + 1) = 0;

ii) A = 1, σ(k)− (k + 1) = 2;

iii) A = 2, σ(k)− (k + 1) = 1;

iv) A = 1, σ(k)− (k + 1) = 1.

Clearly, Cases iii), iv) are not possible by (6). In Case ii) one has by (7) that k = 4 and A = 1;

so n = 4.

Let us consider now Case i). In this case k = p = prime. Similarly to Equation (11), we get:

N · (pa − p) + T · (pa+2 − p) = 2 · (p2 − p). (15)

If T ≥ 1, as a ≥ 1 remark that T · (pa+2− p) > 2(p2− p), as pa+2− p > 2(p2− p) can be written
as p · (pa+1 − 2p + 1) > 0, which is true, as pa+1 − 2p = p(pa − 2) ≥ 0. Thus one must have
T = 0, in which case n = 1 and (15) is not possible.

Therefore, only the Case ii) is possible, i.e., n = p = 4, and this finishes the proof of the
theorem.
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Theorem 4. All solutions of Equation (3’) are n = 9 and n = 2q, where q ≥ 3 is an arbitrary
prime.

Proof. Proceeding similarly as in the proof of Theorem 3, one can deduce that when k = p is a
prime, and for the solutions n = pa ·N one must have an analoque of Equation (15):

N · (pa − p) + T · (pa+2 − p) = 3 · (p2 − p), (16)

where σ(N) = N + T. Now the situation is distinct from the case of (15), as now for a = 1, the
equation T · (p3 − p) = 3(p2 − p) has the solution T = 1, p = 2. As T = 1 and σ(N) = N + 1,

we get that N is a prime: N = q. In this case n = 2q, so the Equation (3’) has infinitely many
solutions, contrary to Equation (3).

Similarly to (14), one can have also the cases A = 1 and σ(k) − (k + 1) = 2, in which case
k = 4 and n = 4, and we do not have a solution; or A = 1 and σ(k) − (k + 1) = 3, so on the
basis of (7’) we get k = 9 and n = 9, which is a solution.

Finally, an extension of Theorems 3 and 4 is contained in the following Theorem 5.

Theorem 5. The equation

σ(n) =
k + 1

k
· n+ r, (17)

where r is a given positive integer can have at most a finite number of solutions n, and/or an
infinite number solutions of type n = q ·N, where q is an arbitrary prime, and N can take at most
a finite number of values.

Proof. As in the proof of the preceding theorems, for n = kA one gets the inequality

A · [σ(k)− (k + 1)] ≤ r. (18)

As r is finite, A and σ(k) − (k + 1) can have at most a finite number of values. The equation
σ(k) − (k + 1) = m, or σ(k) = k + M (M = m + 1) can have at most a finite number of
solutions, as all divisors of k must be certain divisors of M, and there are at most a finite number
of such values.

In the case when σ(k)−(k+1) = 0, i.e., k = p = prime, one gets n = pa ·N with (p,N) = 1,

and writing σ(N) = N + T, the equation similar to (16) will be

N · (pa − p) + T · (pa+2 − p) = r · (p2 − p). (19)

When a = 1, the equation T · (p3 − p) = r(p2 − p) can be written as T · (p+ 1) = r, which can
have a finite number of values of T, so by σ(N) = N + T, there will be a finite number of values
of N. Thus n = p ·N and the proof of the theorem is complete.
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