On certain rational perfect numbers

József Sándor
Department of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Received: 12 March 2022
Revised: 11 May 2022
Accepted: 11 May 2022
Online First: 12 May 2022
Abstract: We study equations of type $\sigma(n)=\frac{k+1}{k} \cdot n+a$, where $a \in\{0,1,2,3\}$, where k and n are positive integers, while $\sigma(n)$ denotes the sum of divisors of n.
Keywords: Sum of divisors, Perfect numbers.
2020 Mathematics Subject Classification: 11A25.

1 Introduction

Let $\sigma(n)$ denote the sum of distinct positive divisors of $n>1$. Let $k \geq 1$ be a positive integer. The equation

$$
\begin{equation*}
\sigma(n)=\frac{k+1}{k} \cdot n \tag{1}
\end{equation*}
$$

where $k=1$, has a long history in mathematics, as these are the famous perfect numbers n for which $\sigma(n)=2 n$ (see [5, 6]).

For $k>1$, however, these are certain "rational perfect" numbers n. For $k=p-1$, with $p \geq 3$ a prime, we have introduced Equation (1) in [3]. A similar equation, namely

$$
\begin{equation*}
\sigma(n)=\frac{k+1}{k} \cdot n+1 \tag{2}
\end{equation*}
$$

for $k=2$ has been considered in our note [4].
In this paper we will solve completely these equations, as well as the following new ones:

$$
\begin{align*}
& \sigma(n)=\frac{k+1}{k} \cdot n+2, \tag{3}\\
& \sigma(n)=\frac{k+1}{k} \cdot n+3 . \tag{3'}
\end{align*}
$$

2 Main results

The following auxiliary result will be used more times:
Lemma 1. $\sigma(n)$ is a multiplicative function, i.e., $\sigma(m n)=\sigma(m) \sigma(n)$ for all $(m, n)=1$. One has the inequality

$$
\begin{equation*}
\sigma(a \cdot b) \geq a \cdot \sigma(b) \tag{4}
\end{equation*}
$$

with equality only for $a=1$.
For a proof of (4), see our paper [1], as well as [2].
Lemma 2. Let $x>1$ be a positive integer. Then

$$
\begin{align*}
& \sigma(x)=x+1 \text { iff } x \geq 2 \text { is a prime; } \tag{5}\\
& \sigma(x)=x+2 \text { is not solvable; } \tag{6}\\
& \sigma(x)=x+3 \text { iff } x=4 \tag{7}\\
& \sigma(x)=x+4 \text { iff } x=9 \tag{7’}
\end{align*}
$$

Proof. (5) is well-known and follows from $\sigma(x) \geq x+1$, with equality only if x is a prime.
As $\sigma(x)=(x+1)+1$ and 1 and $x>1$ are distinct divisors of x, clearly (6) is not possible.
Writing (7) as $\sigma(x)=x+1+2$, it follows that $2 \| x$, and there are no other divisors; so $x=2^{k}$; and it is immediate that $k=2$; so $x=4$.
Writing (7^{\prime}) as $\sigma(x)=x+1+3$, it follows in a similar manner that $x=9$.
Theorem 1. If Equation (1) is solvable, then we must have $n=k=p$, where p is a prime number.

Proof. As $(k, k+1)=1$ we must have $n=$ multiple of k, i.e., $n=k \cdot A(A \geq 1$ integer). Thus (1) becomes

$$
\begin{equation*}
\sigma(k \cdot A)=(k+1) \cdot A \tag{8}
\end{equation*}
$$

By applying inequality (4), one has $\sigma(k \cdot A) \geq A \cdot \sigma(k)$, with equality only for $A=1$, so by (8) we get $\sigma(k) \leq k+1$. By (5) we get that $k=p=$ prime. As $A=1$, we have $n=p \cdot 1=p$, and the proof is complete.

Remark 1. Suppose that $k=q-1$, where $q \geq 3$ is a prime. On the basis of Theorem 1, the equation

$$
\begin{equation*}
\sigma(n)=\frac{q}{q-1} \cdot n \tag{9}
\end{equation*}
$$

can be solved only if $q-1=p$ is a prime. This is possible only if $q=3, p=2$, so the only solution of the Equation (9) is $n=2$. This offers a complete solution of equation from [3].

Theorem 2. If Equation (2) is solvable, then k must be a prime $(k=p)$ and $n=p^{2}$.
Proof. Equation (2) with $n=k \cdot A(A \geq 1)$ can be rewritten as $\sigma(k A)=(k+1) \cdot A+1$. As by (4) one has $\sigma(k A) \geq A \cdot \sigma(k)$, we get that one must have

$$
\begin{equation*}
A \cdot[\sigma(k)-(k+1)] \leq 1 \tag{10}
\end{equation*}
$$

As $\sigma(k)-(k+1) \geq 0$ and $A \geq 1$, inequality (10) can be true only if:
i) $\sigma(k)-(k+1)=0$ and A arbitrary;
ii) $A=1, \sigma(k)-(k+1)=1$.

Remark that Case ii) is not possible by (6), so remains only Case i), when we get that k is prime, and A is arbitrary. Let $k=p$, and write $n=p^{a} \cdot N(a \geq 1, N \geq 1)$ and $(p, N)=1$.

As $\sigma(n)=\sigma\left(p^{a}\right) \sigma(N)=\frac{p^{a+1}-1}{p-1} \cdot \sigma(N)$, Equation (2) can be rewritten as

$$
\begin{equation*}
p \cdot\left(p^{a+1}-1\right) \sigma(N)=\left(p^{2}-1\right) p^{a} \cdot N+p \cdot(p-1) . \tag{11}
\end{equation*}
$$

Let $\sigma(N)=N+T$, where $T \geq 0$ is an integer. Equation (11) can be rewritten as

$$
\begin{equation*}
N \cdot\left(p^{a}-p\right)+T \cdot\left(p^{a+2}-p\right)=p^{2}-p . \tag{12}
\end{equation*}
$$

If $a=1$, (12) is possible only if $N=1$ and $T=0$; thus $n=1$, which is not possible as we have assumed $n>1$.

If $a \geq 2$, (12) is possible only if $N=1, T=0$ and $a=2$, so we get $n=p^{2}$, and the theorem is proved.

Remark 2. Particularly, when $k=2$, we get that only solution of (2) is $n=4$, proved in [4].
Theorem 3. Equation (3) is solvable only if $n=k=4$.
Proof. As $n=k \cdot A(A \geq 1)$, Equation (3) can be rewritten as

$$
\begin{equation*}
\sigma(k A)=(k+1) \cdot A+2 . \tag{1}
\end{equation*}
$$

As $\sigma(k A) \geq A \sigma(k)$, from (13) we get the inequality

$$
\begin{equation*}
A \cdot[\sigma(k)-(k+1)] \leq 2 . \tag{14}
\end{equation*}
$$

Logically, there are possible four distinct cases:
i) A arbitrary, $\sigma(k)-(k+1)=0$;
ii) $A=1, \sigma(k)-(k+1)=2$;
iii) $A=2, \sigma(k)-(k+1)=1$;
iv) $A=1, \sigma(k)-(k+1)=1$.

Clearly, Cases iii), iv) are not possible by (6). In Case ii) one has by (7) that $k=4$ and $A=1$; so $n=4$.

Let us consider now Case i). In this case $k=p=$ prime. Similarly to Equation (11), we get:

$$
\begin{equation*}
N \cdot\left(p^{a}-p\right)+T \cdot\left(p^{a+2}-p\right)=2 \cdot\left(p^{2}-p\right) . \tag{15}
\end{equation*}
$$

If $T \geq 1$, as $a \geq 1$ remark that $T \cdot\left(p^{a+2}-p\right)>2\left(p^{2}-p\right)$, as $p^{a+2}-p>2\left(p^{2}-p\right)$ can be written as $p \cdot\left(p^{a+1}-2 p+1\right)>0$, which is true, as $p^{a+1}-2 p=p\left(p^{a}-2\right) \geq 0$. Thus one must have $T=0$, in which case $n=1$ and (15) is not possible.

Therefore, only the Case ii) is possible, i.e., $n=p=4$, and this finishes the proof of the theorem.

Theorem 4. All solutions of Equation (3') are $n=9$ and $n=2 q$, where $q \geq 3$ is an arbitrary prime.

Proof. Proceeding similarly as in the proof of Theorem 3, one can deduce that when $k=p$ is a prime, and for the solutions $n=p^{a} \cdot N$ one must have an analoque of Equation (15):

$$
\begin{equation*}
N \cdot\left(p^{a}-p\right)+T \cdot\left(p^{a+2}-p\right)=3 \cdot\left(p^{2}-p\right), \tag{16}
\end{equation*}
$$

where $\sigma(N)=N+T$. Now the situation is distinct from the case of (15), as now for $a=1$, the equation $T \cdot\left(p^{3}-p\right)=3\left(p^{2}-p\right)$ has the solution $T=1, p=2$. As $T=1$ and $\sigma(N)=N+1$, we get that N is a prime: $N=q$. In this case $n=2 q$, so the Equation (3^{\prime}) has infinitely many solutions, contrary to Equation (3).

Similarly to (14), one can have also the cases $A=1$ and $\sigma(k)-(k+1)=2$, in which case $k=4$ and $n=4$, and we do not have a solution; or $A=1$ and $\sigma(k)-(k+1)=3$, so on the basis of (7^{\prime}) we get $k=9$ and $n=9$, which is a solution.

Finally, an extension of Theorems 3 and 4 is contained in the following Theorem 5.
Theorem 5. The equation

$$
\begin{equation*}
\sigma(n)=\frac{k+1}{k} \cdot n+r, \tag{17}
\end{equation*}
$$

where r is a given positive integer can have at most a finite number of solutions n, and/or an infinite number solutions of type $n=q \cdot N$, where q is an arbitrary prime, and N can take at most a finite number of values.

Proof. As in the proof of the preceding theorems, for $n=k A$ one gets the inequality

$$
\begin{equation*}
A \cdot[\sigma(k)-(k+1)] \leq r . \tag{18}
\end{equation*}
$$

As r is finite, A and $\sigma(k)-(k+1)$ can have at most a finite number of values. The equation $\sigma(k)-(k+1)=m$, or $\sigma(k)=k+M(M=m+1)$ can have at most a finite number of solutions, as all divisors of k must be certain divisors of M, and there are at most a finite number of such values.

In the case when $\sigma(k)-(k+1)=0$, i.e., $k=p=\operatorname{prime}$, one gets $n=p^{a} \cdot N$ with $(p, N)=1$, and writing $\sigma(N)=N+T$, the equation similar to (16) will be

$$
\begin{equation*}
N \cdot\left(p^{a}-p\right)+T \cdot\left(p^{a+2}-p\right)=r \cdot\left(p^{2}-p\right) . \tag{19}
\end{equation*}
$$

When $a=1$, the equation $T \cdot\left(p^{3}-p\right)=r\left(p^{2}-p\right)$ can be written as $T \cdot(p+1)=r$, which can have a finite number of values of T, so by $\sigma(N)=N+T$, there will be a finite number of values of N. Thus $n=p \cdot N$ and the proof of the theorem is complete.

References

[1] Sándor, J. (1989). On the composition of some arithmetic functions. Studia Universitatis Babeş- Bolyai, Mathematica, 34(1), 7-14.
[2] Sándor, J. (2001). On even perfect and superperfect numbers. Notes on Number Theory and Discrete Mathematics, 7(1), 4-5.
[3] Sándor, J. (2006). An extension of k-perfect numbers. Research Group in Mathematical Inequalities and Applications, 9(4), Article 4.
[4] Sándor, J. (2008). On k_{p}-perfect numbers. Matlap, 12(8), 297-298 (in Hungarian).
[5] Sándor, J., \& Atanassov, K. T. (2021). Arithmetic Functions. Nova Science Publishers, New York.
[6] Sándor, J., Mitrinović, D. S., \& Crstici, B. (2006). Handbook of Number Theory I. Springer, Dordrecht.

