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Abstract: In this study, we take the generalized Fibonacci sequence {un} as u0 = 0, u1 = 1 and
un = run−1 + un−2 for n > 1, where r is a non-zero integer. Based on Halton’s paper in [4], we
derive three interrelated functions involving the terms of generalized Fibonacci sequence {un}.
Using these three functions we introduce a simple approach to obtain a lot of identities, binomial
sums and alternate binomial sums involving the terms of generalized Fibonacci sequence {un}.
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1 Introduction

For n > 1, the second order linear recurrence sequence {wn(a, b; r, s)} is defined by

wn = rwn−1 − swn−2,

where w0 = a, w1 = b. This sequence was introduced by Horadam in [5, 6] and it generalizes
many sequences (see [11]). Fibonacci number sequence {Fn} = {wn(0, 1; 1,−1)}, Lucas number
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sequence {Ln} = {wn(2, 1; 1,−1)}, Pell number sequence {Pn} = {wn(0, 1; 2,−1)} and Pell–
Lucas number sequence {Qn} = {wn(2, 2; 2,−1)} are well-known examples of the sequence
{wn}. In this study, we take the generalized Fibonacci sequence {un} = {wn(0, 1; r,−1)},
where r is a non-zero integer. Thus

un = run−1 + un−2 (1)

where u0 = 0, u1 = 1. It is cleared that un = Fn (n-th Fibonacci number) and un = Pn (n-th
Pell number) for r = 1 and r = 2, respectively. Let α be a positive root of the quadratic equation
x2 − rx− 1 = 0 and β its negative root. Then we have the Binet’s formula

un =
αn − βn

α− β
.

From the Binet’s formula, one can see that

u−n = (−1)n+1un (2)

for n ≥ 0.
Numerous authors appear to have been fascinated by the many interesting summation identities

involving the Fibonacci and generalized Fibonacci numbers. There are many types of identities
involving sums of products of binomial coefficients and Fibonacci or Lucas numbers (see [1, 4,
10–12]). Many authors have been concerned with the generalized Fibonacci sequence {un}. They
have been searched for the binomial sums, alternate binomial sums, weighted binomial sums of
the terms of this sequence and the binomial sums of products of these terms using by matrix
methods, generating function methods or in different ways (see [2, 3, 5–9]).

In this study, based on Halton’s paper in [4], we derive three interrelated functions involving
the terms of generalized Fibonacci sequence {un} and introduce a simple approach to obtain a
lot of identities, binomial sums and alternate binomial sums involving the terms of generalized
Fibonacci sequence {un} using these functions. Numerous new identities, binomial sums and
alternate binomial sums as well as those found in the existing literature are included a single
identity.

2 On three interrelated functions
involving the generalized Fibonacci numbers un

In this section, we will define three interrelated functions involving the generalized Fibonacci
numbers un and give some properties of these functions.

Firstly, we define a function

S1(m,n) = umun − um+1un−1 − (−1)n−1um−n+1. (3)

For all integers m and n, we get

S1(m+ 1, n) = rS1(m,n) + S1(m− 1, n) (4)

using equalities (1) and (3). It is also clear from equalities (1), (2) and (3) that we can write:
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S1(0, n) = 0, (5)

S1(1, n) = 0. (6)

If the equalities (5) and (6) are taken into account in equality (4), it is easily obtained that

S1(m,n) = 0 (7)

for all integers m and n.
Now we consider a function

S2(t,m, n) = umun − um+tun−t − (−1)n−tutum−n+t. (8)

Then by equalities (1) and (8), for all integers t, m and n

S2(t+ 1,m, n) = S2(t− 1,m, n− 2) + rS2(t,m, n− 1). (9)

Since u0 = 0 and u1 = 1, we can easily obtain the following equations from the equalities (1),
(3), (7) and (8):

S2(0,m, n) = 0,

S2(1,m, n) = S1(m,n) = 0.

Thus, from the equality (9), we obtain that

S2(t,m, n) = 0 (10)

for all integers t, m and n.
Finally, we define a function

S3(k, t,m, n) = ukmun −
k∑

i=0

(
k

i

)
(−1)(m+1)iuk−i

m+tu
i
tun−kt−mi. (11)

Theorem 2.1. For all integers t, m, n and k ≥ 0, we have

S3(k + 1, t,m, n) = umS3(k, t,m, n). (12)

Proof. From the definition of the function S3(k, t,m, n), we can write

S3(k + 1, t,m, n) = uk+1
m un −

k+1∑
i=0

(
k + 1

i

)
(−1)(m+1)iuk+1−i

m+t uitun−(k+1)t−mi.

Since (
k + 1

i

)
=

(
k

i

)
+

(
k

i− 1

)
and for i < 0 or 0 ≤ k < i (

k

i

)
= 0,

we obtain that

254



S3(k + 1, t,m, n) = uk+1
m un −

k∑
i=0

(
k

i

)
(−1)(m+1)iuk+1−i

m+t uitun−(k+1)t−mi

−
k∑

i=0

(
k

i

)
(−1)(m+1)(i+1)uk−i

m+tu
i+1
t un−(k+1)t−m(i+1)

= uk+1
m un −

k∑
i=0

(
k

i

)
(−1)(m+1)iuk−i

m+tu
i
t(um+tun−(k+1)t−mi

+ (−1)m+1utun−(k+1)t−m(i+1)).

Since the equality (10) is true for all integers m, n and t, taking n − tk − mi instead of n in
equality (8), we can write

umun−tk−mi = um+tun−t(k+1)−mi + (−1)n−t(k+1)−miutum(i+1)−n+t(k+1)

= um+tun−t(k+1)−mi + (−1)m+1utun−m(i+1)−t(k+1)

using by equality (2). Thus, we have

S3(k + 1, t,m, n) = uk+1
m un − um

k∑
i=0

(
k

i

)
(−1)(m+1)iuk−i

m+tu
i
tun−tk−mi

= umS3(k, t,m, n)

by equality (11).

Theorem 2.2. For all integers t, m, n and k ≥ 0, we have

S3(k, t,m, n) = 0.

Proof. Taking k = 0 in equality (11), we get

S3(0, t,m, n) = un − un = 0.

Similarly, if we take k = 1 in equality (11), we get

S3(1, t,m, n) = umun − um+tun−t − (−1)m+1utun−t−m

= umun − um+tun−t − (−1)n−tutum−n+t

= S2(t,m, n)

by equalities (2) and (8). From the equalities (10), we get S3(1, t,m, n) = 0. Thus, the desired
result is obtained from the Theorem 2.1.

3 Some equalities and binomial sums
about the generalized Fibonacci numbers un

In this section, we will give some equalities, binomial sums and alternate binomial sums about
the generalized Fibonacci number un that can be derived from some special cases of the equality
(11). Since sums and identities involving Fibonacci or generalized Fibonacci numbers are in a
closed form, it is very interesting to investigate these types of identities and sums.
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Now let us take −m and −n instead of m and n respectively in equality (11), we get

uk−mu−n =
k∑

i=0

(
k

i

)
(−1)(−m+1)iuk−i

−m+tu
i
tu−n−kt+mi

by Theorem 2.2. Since u−n = (−1)n+1un for n ≥ 0, we have

ukmun =
k∑

i=0

(
k

i

)
(−1)(m−t)iuk−i

m−tu
i
tun+kt−mi.

This final sum can also be obtained by substituting −t for t in equality (11).
On the left of each equalities below, we write the function S3(k, t,m, n) as (k, t,m, n) briefly

and use the equality (2) to remove the negative subscripts in some cases.

(k, t,−m,−kt− n) : ukmukt+n =
k∑

i=0

(
k

i

)
(−1)(m−t)iuk−i

m−tu
i
tun+2kt−mi

(k, t,m,−kt) : ukmukt =
k∑

i=0

(
k

i

)
(−1)kt+iuk−i

m+tu
i
tu2kt+mi

(k, t,m,m) : uk+1
m =

k∑
i=0

(
k

i

)
(−1)m−i+1+ktuk−i

m+tu
i
tum(i−1)+kt

(k, t,m, nt) : ukmunt =
k∑

i=0

(
k

i

)
(−1)(m+1)iuk−i

m+tu
i
tu(n−k)t−mi

(k, t,mt, n) : ukmtun =
k∑

i=0

(
k

i

)
(−1)(mt+1)iuk−i

(m+1)tu
i
tun−(mi+k)t

(k, t,m, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)kt+i+1uk−i

m+tu
i
tumi+kt

(k, t,m, 1) : ukm =
k∑

i=0

(
k

i

)
(−1)kt+iuk−i

m+tu
i
tumi+kt−1

(k, t,mt, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)kt+i+1uk−i

(m+1)tu
i
tu(mi+k)t

(k, t, 1, n) : un =
k∑

i=0

(
k

i

)
uk−i
t+1u

i
tun−kt−i

(k, t, 1,−n− kt) : un+kt =
k∑

i=0

(
k

i

)
(−1)kt−iuk−i

t+1u
i
tun+2kt+i

(k, t, 1,−kt) : ukt =
k∑

i=0

(
k

i

)
(−1)kt−iuk−i

t+1u
i
tu2kt+i

(k, t, 1, nt) : unt =
k∑

i=0

(
k

i

)
uk−i
t+1u

i
tu(n−k)t−i
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(k, t, 2, n) : rkun =
k∑

i=0

(
k

i

)
(−1)iuk−i

t+2u
i
tun−kt−2i

(k, t, 2,−kt) : rkukt =
k∑

i=0

(
k

i

)
(−1)kt−iuk−i

t+2u
i
tu2(kt+i)

(k, 1,m, n) : ukmun =
k∑

i=0

(
k

i

)
(−1)(m+1)iuk−i

m+1un−k−mi

(k, 1,m, k) : ukmuk =
k∑

i=0

(
k

i

)
(−1)i+1uk−i

m+1umi

(k, 2,m, n) : ukmun =
k∑

i=0

(
k

i

)
(−1)(m+1)iriuk−i

m+2un−2k−mi

(k, t, 1, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)kt+i+1uk−i

t+1u
i
tukt+i

(k, t, 2, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)kt+i+1uk−i

t+2u
i
tukt+2i

(k, 1,m, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)k+i+1uk−i

m+1uk+mi

(k, 1,m, 1) : ukm =
k∑

i=0

(
k

i

)
(−1)k+iuk−i

m+1uk+mi−1

(k, 1, 1,−n) : un =
k∑

i=0

(
k

i

)
(−r)k−iun+k+i

(k, 1, 1,−kn) : ukn =
k∑

i=0

(
k

i

)
(−r)k−iuk(n+1)+i

(k, 1, 1,−k) : uk =
k∑

i=0

(
k

i

)
(−r)k−iu2k+i

(k, 2,−1,−n) : un =
k∑

i=0

(
k

i

)
(−r)iun+2k−i

(k,−1, 2,−n) : rkun =
k∑

i=0

(
k

i

)
(−1)k−iun−k+2i

(k, 2,−1,−2k) : u2k =
k∑

i=0

(
k

i

)
(−1)iriu4k−i

(k,−1, 2, k) : rkuk =
k∑

i=0

(
k

i

)
(−1)iu2(k−i)

(k, 1, 1, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)k+i+1rk−iuk+i
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(k, 2,−1, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)i+1riu2k−i

(k,−1, 2, 0) : 0 =
k∑

i=0

(
k

i

)
(−1)iuk−2i

(1, t,m, n) : umun − um+tun−t = (−1)m+1utun−m−t

(1, t,m,−n) : umun = (−1)t(um+tun+t − utun+m+t)

(1, t,m,−m) : u2m = (−1)t(u2m+t − utu2m+t)

(1, t,m, n− t) : umun−t = um+tun−2t + (−1)m+1utun−m−2t (13)

(1, t− s,m+ s,−m+ s) : um+sum−s = (−1)s−m−1um+tun−t + us−tus+t

(1, 1,m, n) : um+1un−1 − umun = (−1)mun−m−1

(1, 1,m, n− 1) : um+1un−2 − umun−1 = (−1)mun−m−2

(1, 2,m− 1, n− 1) : um−1un−1 = um+1un−3 + (−1)mrun−m−2

(1, 1,m,m) : u2m = um+1um−1 + (−1)m+1

(1, 1,m,m− 1) : um+1um−2 − umum−1 = (−1)m+1r

(1, 2,m− 1,m− 1) : um+1um−3 − u2m−1 = (−1)mr2

(1, 1,m,−m) : u2m + u2m+1 = u2m+1

(1, 2,m,−m) : u2m+2 − u2m = ru2m+2

(1, 1,m+ 1,−m+ 1) : um+1um−1 + um+2um = u2m+1

(1, 1,−m,m+ 1) : u2m = um(um+1 + um−1) (14)

Now we will give an example how different sums can also be obtained by using the above
identities. It is clear that many equalities can be obtained in this way.

If we substitute t −m instead of n − t in the equality (13) and use the equality (2), we can
easily obtain the identity

umut−m = um+tu−m + (−1)m+1utu−2m

= (−1)m+1(um+tum − utu2m).

Dividing the obtained equality by um and using the equality (2), we have

ut(um+1 + um−1) = um+t + (−1)mut−m. (15)

Let us add−ut−(−1)mut to both sides of equality (15), substitute tm+n for t in the resulting
identity, and sum from t = 1 to t = k, then we have the following sum:

k∑
t=1

utm+n =
u(k+1)m+n − um+n − (−1)m(ukm+n − un)

um+1 + um−1 − 1− (−1)m
. (16)

It can also be seen that this sum can be formulated by Binet’s formula or recurrence relation (1)
(see [13] and [14]). Taking m = 1 in equality (16), we have

k∑
t=1

ut+n =
1

r
(uk+n+1 + uk+n − un+1 − un).
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Now if we take m = 2, n = 2s and m = 2, n = 2s− 1 in equality (16), we obtain

k∑
t=1

u2(t+s) =
1

r
(u2(k+s)+1 − u2s+1)

and
k∑

t=1

u2(t+s)−1 =
1

r
(u2(k+s) − u2s),

respectively, using the recurrence relation (1).
Similarly, taking m = 3 and n = 3s in equality (16), we get

k∑
t=1

u3(t+s) =
1

r(r2 + 3)
(u3(k+s+1) + u3(k+s) − u3(s+1) − u3s).

Acknowledgements

The authors would like to thank the referees for a number of helpful suggestions for improving
the present paper.

References

[1] Adegoke, K. (2018). Fibonacci and Lucas identities the golden way. arXiv. https://
doi.org/10.48550/arXiv.1810.12115 .

[2] Bicknell, M. (1975). A primer on the Pell sequences and related sequences. The Fibonacci
Quarterly, 13(4), 345–349.

[3] Filipponi, P., & Horadam, A. F. (1993). Second derivative sequences of the Fibonacci and
Lucas polynomials. The Fibonacci Quarterly, 31(3), 194–204.

[4] Halton, J. H. (1965). On a general Fibonacci identity. The Fibonacci Quarterly, 3(1), 31–43.

[5] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of number. The
Fibonacci Quarterly, 3(3), 161–176.

[6] Horadam, A. F. (1965). Generating functions for powers of a certain generalized sequence
of numbers. Duke Mathematical Journal, 32, 437–446.
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