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1 Introduction

Let, as usual, P , N, C be the sets of primes, positive integers and complex numbers, respectively.
A function f : N→ C is multiplicative if

f(nm) = f(n)f(m) for every n,m ∈ N, (n,m) = 1.

LetM be the set of complex-valued multiplicative functions.
A characterization of the identity function was studied by C. Spiro [7], J.-M. De Koninck,

I. Kátai and B. M. Phong [1], B. M. Phong [4, 5] and by others.
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In 1992, C. Spiro [7] proved that if f ∈M satisfies

f(p+ q) = f(p) + f(q) (∀p, q ∈ P) and f(p0) 6= 0 for some p0 ∈ P ,

then f(n) is the identity function.
In 1997, J.-M. De Koninck, I. Kátai and B. M. Phong [1] proved that if a function f ∈ M

satisfies the condition

f(p+m2) = f(p) + f(m2) for every p ∈ P ,m ∈ N,

then f(n) = n for all n ∈ N.
Recently Poo-Sung Park [3] proved the following results:

Theorem A. If a multiplicative function f : N→ C satisfies

f(n2 + nm+m2) = f 2(n) + f(n)f(m) + f 2(m) for every n,m ∈ N,

then f is the identity function.

Theorem B. A multiplicative function f : N→ C satisfies

f(n2 − nm+m2) = f 2(n)− f(n)f(m) + f 2(m)

if and only if f is one of the following:

1. the identity function f(n) = n;

2. the constant function f(n) = 1;

3. function fp defined by:

fp(n) =

 0, if p | n
1, if p - n

for some prime p ≡ 2 (mod 3).

For some generalizations of Theorem A we refer the works of B. M. M. Khanh [2],
B. M. Phong and R. B. Szeidl [6]. They prove that if D ∈ {1, 2, 3} and an arithmetical function
f : N→ C satisfy the conditions f(1) = 1 and

f(n2 +Dnm+m2) = f 2(n) +Df(n)f(m) + f 2(m) for every n,m ∈ N,

then f is the identity function.

In this note, we improve Theorem B as follows:

Theorem 1. An arithmetical function f : N→ C satisfies

f(n2 − nm+m2) = f 2(n)− f(n)f(m) + f 2(m) for every n,m ∈ N

if and only if f is one of the following:

(a) f(n) = 0 for every n ∈ N,
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(b) f(1) = 0 and f(n) = 1 for every n ∈ N, n ≥ 2,

(c) f(n) = ΘM(n) =

 0, if M | n
1, if M - n,

for every n ∈ N, where

(c1) either M = 2,
(c2) or M = q1 · · · qs ≥ 5 is a square-free number, qi ≡ 2 (mod 3) (i = 1, . . . , s),

(d) f(n) = 1 for every n ∈ N,
(e) f(n) = n for every n ∈ N.

Theorem 2. An arithmetical function f : N→ C satisfies

f(n2 − 2nm+m2) = f 2(n)− 2f(n)f(m) + f 2(m) for every n,m ∈ N

if and only if f is one of the following:

(A) f(n) = 0 for every n ∈ N,
(B) f(n) = χ2(n) for every n ∈ N,
(C) f(n) = n for every n ∈ N,

where χ2(n) is a Dirichlet character (mod 2).

We infer from Theorem 1 and Theorem 2 the following results.

Corollary 1. (Poo-Sung Park, Theorem A). A function f ∈M satisfies

f(n2 − nm+m2) = f 2(n)− f(n)f(m) + f 2(m) for every n,m ∈ N

if and only if f ∈ {U, χq, I}, where U(n) = 1, I(n) = n for every n ∈ N and χq is the Dirichlet
principal character (mod q), q ∈ P , q ≡ 2 (mod 3).

Corollary 2. A multiplicative function f : N→ C satisfies

f(n2 − 2nm+m2) = f 2(n)− 2f(n)f(m) + f 2(m) for every n,m ∈ N

if and only if f ∈ {χ2, I}, where I(n) = n for every n ∈ N and χ2 is the Dirichlet character
(mod 2).

2 Lemmas

Assume that f : N→ C satisfies

f(n2 − nm+m2) = f 2(n)− f(n)f(m) + f 2(m) for every n,m ∈ N. (1)

First we prove the following lemma.

Lemma 2.1. Assume that f : N→ C satisfies (1). Then

f(k2) = f 2(k) (2)

and (
f(n)− f(m)

)(
f(n+m)− f(n)− f(m)

)
= 0. (3)

hold for every k, n,m ∈ N.
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Proof. The relation (2) is obvious, because by taking n = m = k into (1), we have

f(k2) = f(k2 − k · k + k2) = f 2(k)− f(k) · f(k) + f 2(k) = f 2(k).

In order to prove (3), we start with the relation

(n+m)2 − (n+m)m+m2 = (n+m)2 − (n+m)n+ n2,

consequently it follows from (1) that

f 2(n+m)− f(n+m)f(m) + f 2(m) = f 2(n+m)− f(n+m)f(n) + f 2(n),

and so (
f(n)− f(m)

)(
f(n+m)− f(n)− f(m)

)
= 0

holds for every n,m ∈ N. Thus, (3) and Lemma 2.1 are true.

Lemma 2.2. Assume that f : N→ C satisfies (1). Then(
f(1), f(2)

)
∈
{

(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)
}
. (4)

Proof. It is obvious from (2) that

f(1) = f 2(1), i.e., f(1) ∈ {0, 1}.

First, we infer from (1) and from 3 = 22 − 2 · 1 + 12, 32 − 3 · 2 + 22 = 32 − 3 · 1 + 12 that

f(3) = f 2(2)− f(2) · f(1) + f 2(1)

and

0 = f 2(3)− f(3) · f(2) + f 2(2)− (f 2(3)− f(3) · f(1) + f 2(1))

= −f(3)
(
f(2)− f(1)

)
+
(
f(2)− f(1)

)(
f(2) + f(1)

)
= −

(
f(2)− f(1)

)(
f(3)− f(2)− f(1)

)
= −

(
f(2)− f(1)

)(
f 2(2)− f(2)f(1) + f 2(1)− f(2)− f(1)

)
.

(5)

By using (5), it is obvious that

if f(1) = 0, then f(2)
(
f 2(2)− f(2)

)
= f 2(2)

(
f(2)− 1

)
= 0

and

if f(1) = 1, then
(
f(2)− 1

)(
f 2(2)− 2f(2)

)
= f(2)

(
f(2)− 1

)(
f(2)− 2

)
= 0

The last two relations prove (4).
Lemma 2.2 is proved.

3 Proof of Theorem 1

It is clear to check that the functions defined in (a), (b), (d) and (e) satisfy the functional equation
(1). Let us consider the case (c). IfM = 2, then f(n) = Θ2(n) = χ2(n) is the Dirichlet character
(mod 2) and it is trivial that

χ2(n
2 − nm+m2) = χ2

2(n)− χ2(n)χ2(m) + χ2
2(m) for every n,m ∈ N.
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Now we consider the case (c2). Let M = q1 · · · qs ≥ 5 be a square-free number and
qi ≡ 2 (mod 3) for every i ∈ {1, . . . , s}. Let f(n) = ΘM(n) be a function defined in (c).
Then we infer from the facts q1 ≡ · · · ≡ qs ≡ 2 (mod 3) that:

ΘM(n2 − nm+m2) = 0 ⇐⇒ n2 − nm+m2 ≡ 0 (mod M)

⇐⇒ n2 − nm+m2 ≡ 0 (mod qi) for every i ∈ {1, . . . , s}
⇐⇒ qi|n and qi|m for every i ∈ {1, . . . , s}
⇐⇒ M |n and M |m
⇐⇒ Θ2

M(n)−ΘM(n)ΘM(m) + Θ2
M(m) = 0,

consequently

ΘM(n2 − nm+m2) = Θ2
M(n)−ΘM(n)ΘM(m) + Θ2

M(m)

for every n,m ∈ N.
In the above proof we have used that Θ2

M(n)− ΘM(n)ΘM(m) + Θ2
M(m) ∈ {0, 1} for every

n,m ∈ N.
Now let us prove the “only if” part.
As we seen in the Lemma 2.2 there are five possibilities according to(

f(1), f(2)
)
∈
{

(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)
}
.

(a) Assume that f(1) = 0 and f(2) = 0. We will prove that

f(n) = 0 for every n ∈ N. (6)

It follows from (1) and (2) that

f(3) = f 2(2)− f(2)f(1) + f 2(1) = 0 and f(4) = f 2(2) = 0.

If we assume that f(1) = · · · = f(N − 1) = 0 and f(N) 6= 0, then N ≥ 5. Now we apply
(3) to get

(f(1)− f(m))(f(m+ 1)− f(m)− f(1)) = −f(m)(f(m+ 1)− f(m)) = 0,

and so
f(m+ 1) = f(m) if f(m) 6= 0.

This with the fact f(N) 6= 0 implies that

f(n) = f(N) for every n ∈ N, n ≥ N.

Since N ≥ 5, we have

(N − 1)2 − (N − 1) · 1 + 12 = N2 − 3N + 3 ≥ 5N − 3N + 3 = 2N + 3 > N,

which implies
f
(

(N − 1)2 − (N − 1) · 1 + 12
)

= f(N) 6= 0.

This is impossible, because by (1) we obtain that

f
(

(N − 1)2 − (N − 1) · 1 + 12
)

= f 2(N − 1)− f(N − 1) · f(1) + f 2(1) = 0.

Thus, we have proved that if f(1) = f(2) = 0 then (6) is true.
The proof of (a) is finished.
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(b) Assume that f(1) = 0 and f(2) = 1. We will prove that f(n) = 1 for every n ≥ 2.

Indeed, we infer from (3) that(
f(n)− f(1)

)(
f(n+ 1)− f(n)− f(1)

)
= f(n)

(
f(n+ 1)− f(n)

)
= 0,

consequently
f(n+ 1) = f(n) if f(n) 6= 0.

Since f(2) = 1, the last relation shows that f(3) = 1, f(4) = 1, . . . , and f(n) = 1 for
every n ≥ 2.
The proof of (b) is finished.

(c1) Assume that f(1) = 1 and f(2) = 0. By applying (3), we have(
f(n)− f(2)

)(
f(n+ 2)− f(n)− f(2)

)
= f(n)

(
f(n+ 2)− f(n)

)
= 0,

consequently
f(n+ 2) = f(n) if f(n) 6= 0.

Thus, from the fact f(1) = 1, we have

f(2k + 1) = 1 for every k ∈ N. (7)

Now we prove that
f 2(2k) = f(2k) for every k ∈ N (8)

and
f(2k)

(
f(2k + 2)− 1

)
= 0 for every k ∈ N. (9)

It follows from (3) and (7) that(
f(2k)− 1

)(
− f(2k)

)
=
(
f(2k)− f(1)

)(
f(2k + 1)− f(2k)− f(1)

)
= 0,

which proves (8).

On the other hand, it follows from (3), (8) that

f(2k)f(2k + 2)− f(2k) = f(2k)f(2k + 2)− f 2(2k)

= f(2k)
(
f(2k + 2)− f(2k)

)
=
(
f(2k)− f(2)

)(
f(2k + 2)− f(2k)− f(2)) = 0,

which proves (9).
Finally, we will prove that

f(2k) = 0 for every k ∈ N. (10)

Assume that there is a M ∈ N such that f(2n) = 0 for every n < M , and f(2M) 6= 0.
Then (8) implies that f(2M) = 1, consequently it follows from (9) that

f(2n) = 1 for every n ≥M. (11)

Since f(2) = 0 and f(4) = f 2(2) = 0, we have M ≥ 3.
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Applying (3) for n = 2M − 2 and m = 2, we have f(n) = f(2M − 2) = 0, f(m) =

f(2) = 0 and so

f
(

(2M − 2)2 − (2M − 2) · 2 + 22
)

= f 2(2M − 2)− f(2M − 2) · f(2) + f 2(2) = 0.

But it follows from M ≥ 3 that

(2M − 2)2 − (2M − 2) · 2 + 22 = 4M2 − 12M + 12 > 2M,

which with (11) implies f
(

(2M − 2)2 − (2M − 2) · 2 + 22
)

= 1. This is impossible.
Thus we have proved (10), which with (7) implies that f(n) = χ2(n).
The proof of (c1) for M = 2 is finished.

(c2) Now assume that f(1) = 1, f(2) = 1 and f(n) 6= 1 for some n ∈ N.
In this case we have

f(3) = f 2(2)− f(2)f(1) + f 2(1) = 1 and f(4) = f 2(2) = 1.

It follows from our assumption that there is some number M ∈ N, M ≥ 5 such that

f(M) 6= 1 and f(n) = 1 for every n ∈ {1, . . . ,M − 1}. (12)

First we prove that
f(M) = 0. (13)

We infer from (3) that(
f(M)−f(n)

)(
f(M +n)−f(M)−f(n)

)
=
(
f(M)−1

)(
f(M +n)−f(M)−1

)
= 0

holds for every n ∈ {1, . . . ,M − 1}, consequently

f(M + n) = f(M) + 1 for every n ∈ {1, . . . ,M − 1}.

This with n = 1 and n = 2 implies that

f(M + 1) = f(M) + 1 and f(M + 2) = f(M) + 1.

On the other hand, we infer from (3) that

−f(M) =
(
f(M) + 1− 1

)(
f(M) + 1− (f(M) + 1)− 1

)
=
(
f(M + 1)− f(1)

)(
f(M + 2)− f(M + 1)− f(1)

)
= 0.

Thus, the proof of (13) is finished.
Let

I := {n ∈ N | f(n) = 1}.

It follows from (12) that
{1, . . . ,M − 1} ⊆ I,

and so we infer from (3), (12) and (13) that if n ∈ I , then

f(n+M)−1 = f(n+M)−f(n)−f(M) =
(
f(n)−f(M)

)(
f(n+M)−f(n)−f(M)

)
= 0.
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Therefore, we have proved that

f(n+M) = 1 for every n ∈ I, (14)

which, using the fact {1, . . . ,M − 1} ⊆ I shows that

{1, . . . ,M − 1,M + 1, . . . , 2M − 1} ⊆ I.

In the same way, we infer from (14) that

N \ {M, 2M, . . .} ⊆ I. (15)

Now we will prove that
f(Mt) = 0 for every t ∈ N. (16)

Assume that (16) does not hold. Then there is a t0 ∈ N, t0 ≥ 2 such that

f(M) = · · · = f((t0 − 1)M) = 0 and f(t0M) 6= 0.

By applying (3) and (15) with n = 1,m = t0M , we have(
1− f(t0M)

)(
− f(t0M)

)
=
(
f(1)− f(t0M)

)(
f(t0M + 1)− f(1)− f(t0M)

)
= 0,

consequently
f(t0M) ∈ {0, 1}.

If f(t0M) 6= 0, then f(t0M) = 1, t0M ∈ I . This fact with (14) implies that

f(tM) = 1 for every t ∈ N, t ≥ t0. (17)

Now we apply (1) for n = m = (t0 − 1)M , we obtain that

f
((

(t0 − 1)M
)2)

= f 2
(

(t0 − 1)M
)

= 0.

This contradicts to (17), because

(t0 − 1)2M = 5(t0 − 1)2 ≥ t0,

which with (17) implies
f
((

(t0 − 1)M
)2)

= 1.

Thus, the proof of (16) is finished, which proves that

f(n) = ΘM(n) =

 0, if M | n
1, if M - n.

(18)

Now we prove that M is a square-free number and every prime divisor of M is congruent
to 2(mod 3). Let M = P 2Q, where Q = q1 · · · qs is a square-free number. Then

M |(PQ)2 − PQM +M2 = M(Q− PQ+M),

and so we obtain from (18) that

0 = f
(

(PQ)2 − PQM +M2
)

= f 2(PQ)− f(PQ)f(M) + f 2(M) = f 2(PQ),

which implies
f(PQ) = 0 and M = P 2Q ≤ PQ.
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This implies that P = 1 and M = Q = q1 · · · qs. It is clear to show that (M, 3) = 1.
Assume by contradiction that M = 3R, then M | 3R2 = R2 − R · (2R) + (2R)2, and so
we have from (18)

0 = f(3R2) = f 2(R)− f(R)f(2R) + f 2(2R) = 12 − 12 + 12 = 1,

which is impossible, because M - R, M - 2R and f(R) = f(2R) = 1.

Now we prove that q ≡ 2 (mod 3) for every prime q | M . Assume by contradiction that
q|M and q ≡ 1 (mod 3). Then

x2 − xy + y2 ≡ 0 (mod q) ⇐⇒ (2x− y)2 ≡ −3y2 (mod q).

Since q ≡ 1 (mod 3), we have
(

−3
q

)
=
(

q
3

)
= 1, consequently there are n,m ∈ N such

that n2−nm+m2 ≡ 0 (mod M), (nm, q) = 1. HenceM - n,m and so f(n) = f(m) = 1,
infer from (18) that

0 = f
(
n2 − nm+m2

)
= f 2(n)− f(n)f(m) + f 2(m) = 1− 1 · 1 + 12 = 1,

which is impossible.
Thus, we proved the assertions (c2) and (c) of Theorem 1.

(d) Assume that f(1) = 1, f(2) = 1 and f(n) = 1 for every n ∈ N, n ≥ 3.
Then f(n) = 1 for every n ∈ N, and so the assertion (d) is proved.

(e) Assume that f(1) = 1 and f(2) = 2.
Assume that f(n) = n for every n < N , where N ≥ 3. Then we infer from (3) that(
N − 2

)(
f(N)−N

)
=
(
f(N − 1)− f(1)

)(
f((N − 1) + 1)− f(N − 1)− f(1)

)
= 0,

which proves f(N) = N .
The case (e) is true, and so Theorem 1 is proved. �

4 Proof of Theorem 2

It is clear to check that the functions defined in (A), (B) and (C) satisfy the functional equation
(1). Now we prove the “only if” part.

Assume that f : N→ C satisfies

f(n2 − 2nm+m2) = f 2(n)− 2f(n)f(m) + f 2(m) for every n,m ∈ N. (19)

First we note that
f(k2) =

(
f(n+ k)− f(n)

)2
for every n, k ∈ N. (20)

This follows direct from (19) if m = n+ k.
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In the following we shall use the notation [N, x, y, u, v] ∈ S if

N = x2 − 2xy + y2 = u2 − 2uv + v2.

It is obvious that if [N, x, y, u, v] ∈ S, then we infer from (19) that

E(N) := f 2(x)− 2f(x)f(y) + f 2(y)−
(
f 2(u)− 2f(u)f(v) + f 2(v)

)
= 0.

One can check that [1, 3, 2, 2, 1] ∈ S, consequently

E(1) = f 2(3)− 2f(3)f(2) + f 2(2)−
(
f 2(2)− 2f(2)f(1) + f 2(1)

)
= −

(
f(3)− f(1)

)(
− f(3) + 2f(2)− f(1)

)
= 0.

Thus, we have two cases:
(A) f(3) = f(1)

(B) f(3) 6= f(1) and f(3) = 2f(2)− f(1).

Let us consider the case (A), i.e. f(3) = f(1). In this case, we obtain from (20) that

f(4) = f(22) =
(
f(1 + 2)− f(1)

)2
= 0

and so the fact [4, 4, 2, 3, 1] ∈ S implies

0 = E(4) = f 2(4)− 2f(4)f(2) + f 2(2)−
(
f 2(3)− 2f(3)f(1) + f 2(1)

)
= f 2(2).

Since f(3) = f(1) and f(2) = f(4) = 0, we may assume that f(n) = f(1)χ2(n) holds for every
n ≤ 4. Then we infer from (20) that

0 = f(22) =
(
f(n+ 1)− f(n− 1)

)2
,

which gives

f(n+ 1) = f(n− 1) = f(1)χ2(n− 1) = f(n− 1) = f(1)χ2(n+ 1).

Thus, we have proved that f(n) = f(1)χ2(n) holds for every n ∈ N. Therefore we infer from
(19) that f(1) ∈ {0, 1}. Thus we have two solutions: either f(n) = 0, or f(n) = χ2(n) for every
n ∈ N.

Now we consider the case (B). Assume that f(3) 6= f(1) and f(3) = 2f(2) − f(1). Then
f(2)− f(1) 6= 0. We infer from the fact [4, 5, 3, 3, 1] ∈ S that

E(4) = f 2(5)− 2f(5)f(3) + f 2(3)−
(
f 2(3)− 2f(3)f(1) + f 2(1)

)
=
(
f(5)− f(1)

)(
f(5)− 2f(3) + f(1)

)
=
(
f(5)− f(1)

)(
f(5)− 4f(2) + 3f(1)

)
= 0.
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First we prove that f(5)− f(1) 6= 0, consequently

f(5) = 4f(2)− 3f(1). (21)

Assume that f(5) = f(1). Then we infer from the facts [1, 5, 4, 4, 3] ∈ S and

f(4) = (f(3)− f(1))2 = 4(f(2)− f(1))2 = 4f(1)

that

E(1) = f 2(5)− 2f(5)f(4) + f 2(4)−
(
f 2(4)− 2f(4)f(3) + f 2(3)

)
= f 2(1)− 8f 2(1) + 8f(1)(2f(2)− f(1))− (2f(2)− f(1))2

= 4
(
f(2)− f(1)

)(
4f(1)− f(2)

)
= 0.

Since f(2)−f(1) 6= 0, the last relation implies that f(2) = 4f(1), and so f(3) = 2f(2)−f(1) =

7f(1). Since f(3) = 7f(1) 6= f(1), we have f(1) 6= 0. But one can check that [4, 5, 3, 4, 2] ∈ S ,
consequently

E(4) = f 2(5)− 2f(5)f(3) + f 2(3)−
(
f 2(4)− 2f(4)f(2) + f 2(2)

)
= f 2(1)− 14f(1)f(1) + 49f 2(1)−

(
16f 2(1)− 32f(1)f(1) + 16f 2(1)

)
= 36f 2(1) = 0.

This is impossible, because f(1) 6= 0. Therefore, we have proved that (21) is true.

Now assume that (21) is true, i.e., f(5) = 4f(2) − 3f(1). Then we infer from the facts
f(3) = 2f(2)− f(1), f(4) = 4f(1) and [1, 5, 4, 4, 3] ∈ S that

E(1) = f 2(5)− 2f(5)f(4) + f 2(4)−
(
f 2(4)− 2f(4)f(3) + f 2(3)

)
=
(

4f(2)− 3f(1)
)2
− 8f(1)

(
4f(2)− 3f(1)

)
+
(

4f(1)
)2

−
(

4f(1)
)2

+ 8f(1)
(

2f(2)− f(1)
)
−
(

2f(2)− f(1)
)2

= 12
(
f(2)− f(1)

)(
f(2)− 2f(1))

)
= 0.

Since f(2)− f(1) 6= 0, the last relation shows that f(2) = 2f(1).

On other hand, we infer from (20) that f(1) = f(12) = (f(2)− f(1))2 = f 2(1), which with
the fact f(2)− f(1) = 2f(1)− f(1) = f(1) 6= 0 implies that f(1) = 1. Consequently

f(1) = 1, f(2) = 2f(1) = 2, f(3) = 2F (2)− f(1) = 3f(1) = 3 and f(4) = 4f(1) = 4.

Assume that f(n) = n for every n ≤ N , where N ≥ 4. The we obtain from (20) that

1 = f(12) =
(
f(N)−f(N−1)

)2
=
(
f(N)− (N−1)

)2
= f 2(N)−2(N−1)f(N)+(N−1)2

and

4 = f(4) = f(22) =
(
f(N)− f(N − 2)

)2
=
(
f(N)− (N − 2)

)2
= f 2(N)− 2(N − 2)f(N) + (N − 2)2.
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These imply that

−2(N − 2)f(N) + (N − 2)2 − (−2(N − 1)f(N) + (N − 1)2) = 4− 1 = 3

and so 2f(N) = 2N . Thus we have proved that f(N) = N , consequently f(n) = n for every
n ∈ N.

Theorem 2 is proved. �

5 Proof of the corollaries

Since f ∈M, we have f(1) = 1. It is obvious that if f(M) = f(q1 · · · qs) = f(q1) · · · f(qs) = 0

and M is minimal, then M = q ∈ P . Therefore, Corollary 1 and Corollary 2 are true. �
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