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1 Introduction

Let, as usual, P, N, C be the sets of primes, positive integers and complex numbers, respectively.
A function f : N — C is multiplicative if

f(nm) = f(n)f(m) forevery n,m € N, (n,m) = 1.

Let M be the set of complex-valued multiplicative functions.
A characterization of the identity function was studied by C. Spiro [7], J.-M. De Koninck,
I. Kétai and B. M. Phong [1], B. M. Phong [4, 5] and by others.
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In 1992, C. Spiro [7] proved that if f € M satisfies

flp+q)=f(p)+ fl@) (Vp,q € P) and f(po) #0 forsome p, € P,

then f(n) is the identity function.
In 1997, J.-M. De Koninck, I. Kétai and B. M. Phong [1] proved that if a function f € M
satisfies the condition

f(p+m?) = f(p)+ f(m?) forevery p€ P,m € N,

then f(n) =nforalln € N.
Recently Poo-Sung Park [3] proved the following results:

Theorem A. If a multiplicative function f : N — C satisfies
f(n* +nm+m?) = f2(n) + f(n)f(m) + f>(m) forevery n,m €N,
then f is the identity function.

Theorem B. A multiplicative function f : N — C satisfies

f? —nm+m?) = f*(n) — f(n)f(m) + f*(m)

if and only if f is one of the following:
1. the identity function f(n) = n;
2. the constant function f(n) = 1;
3. function f, defined by:
0, if pln

fp =
") 1, if pin

for some prime p = 2 (mod 3).

For some generalizations of Theorem A we refer the works of B. M. M. Khanh [2],
B. M. Phong and R. B. Szeidl [6]. They prove that if D € {1, 2,3} and an arithmetical function
f: N — C satisty the conditions f(1) = 1 and

f(n?® + Dnm +m?) = f2(n) + Df(n)f(m) + f*(m) forevery n,m € N,
then f is the identity function.
In this note, we improve Theorem B as follows:

Theorem 1. An arithmetical function f : N — C satisfies
F(n? = nm 4+ m?) = [3(n) — f(n)f(m) + f2(m) for every n,m € N

if and only if f is one of the following:
(a) f(n) =0 forevery n €N,
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(b) f(1)=0 and f(n)=1 forevery n € N,n > 2,
0, if M|n

(¢) f(n)=0p(n)= L # Min, forevery n € N, where

(cl) either M = 2,
(c2) or M = qy---qs > 5 is a square-free number, ¢; =2 (mod 3) (i =1,...,s),
(d) f(n)=1 forevery n € N,
(e) f(n)=n forevery n € N.
Theorem 2. An arithmetical function f : N — C satisfies
f(n* —2nm +m?) = f2(n) — 2f(n)f(m) + f*(m) forevery n,m € N
if and only if f is one of the following:
(A) f(n) =0 forevery n €N,
(B) f(n) = x2(n) forevery n €N,
(C) f(n) =n forevery n € N,
where xo(n) is a Dirichlet character (mod 2).
We infer from Theorem 1 and Theorem 2 the following results.
Corollary 1. (Poo-Sung Park, Theorem A). A function f € M satisfies
f(n* —nm+m?) = f2(n) — f(n)f(m) + f*(m) forevery n,m € N

ifandonly if f € {U, x,, I}, where U(n) = 1, I(n) = n for every n € Nand x, is the Dirichlet
principal character (mod ¢q), ¢ € P,q =2 (mod 3).

Corollary 2. A multiplicative function f : N — C satisfies
f(n? = 2nm +m?) = f2(n) — 2f(n) f(m) + f*(m) forevery n,m € N

if and only if f € {xa,1}, where I(n) = n forevery n € N and xs is the Dirichlet character
(mod 2).

2 Lemmas

Assume that f : N — C satisfies
f(n? —nm +m?) = f2(n) — f(n)f(m) + f*(m) forevery n,m € N. (1)
First we prove the following lemma.

Lemma 2.1. Assume that f : N — C satisfies (1). Then
F&?) = f2(k) )

and
(£0) = £m) (f(n+m) = f(m) = f(m)) = 0. 3
hold for every k,n,m € N.
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Proof. The relation (2) is obvious, because by taking n = m = k into (1), we have
fR?) = f(k* =k -k + k) = f2(k) = f(k) - f(k) + f2(k) = f2(k).
In order to prove (3), we start with the relation
(n+m)? — (n+m)m+m?=(n+m)*— (n+m)n+n?
consequently it follows from (1) that
Pn+m) = f(n+m)fm) + f2(m) = f(n+m) — f(n+m)f(n) + f2(n).
and so
(£00) = 7)) (F (0 +-m) = f() = F(m)) = 0
holds for every n, m € N. Thus, (3) and Lemma 2.1 are true. [l
Lemma 2.2. Assume that f : N — C satisfies (1). Then
(£, £@) € {(0.0),(0,1), (1,0}, (1,1),(1,2)}. o
Proof. 1t is obvious from (2) that
F() = £2(1), ie, £(1) € {0,1.
First, we infer from (1) and from3 =22 —2-1+1%2,32 -3-2+22 =32 -3-1+ 12 that
f3) = f3(2) = f(2)- F(1) + f2(1)
and

0=/f2(3) = f(3) - f(2) + [2(2) = (S*(3) = f(3) - F(1) + f*(1))

=132 - ) + (£ = 7)) (£ + 1)
&)
=~ (r@ - 1) (r6) - 12 - 1)
= —(F@) - 1) (@~ F@UFQ) + 20) - £(2) - F1))
By using (5), it is obvious that
if (1) = 0, then f(2)(f(2) — (2)) = 22)(f(2) = 1) =0
and
if f(1) = 1, then (1(2) —1) (1’2 ~2/(2)) = /@) (/) ~ 1) (f ~2) =0
The last two relations prove (4).
Lemma 2.2 is proved. [

3 Proof of Theorem 1

It is clear to check that the functions defined in (a), (b), (d) and (e) satisfy the functional equation
(1). Let us consider the case (c). If M = 2, then f(n) = ©3(n) = xa(n) is the Dirichlet character
(mod 2) and it is trivial that

xa2(n? — nm +m?) = x3(n) — xa(n)xa(m) + x3(m) for every n,m € N.
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Now we consider the case (¢2). Let M = ¢;---qs > 5 be a square-free number and
¢; = 2 (mod 3) for every i € {1,...,s}. Let f(n) = Op(n) be a function defined in (c).
Then we infer from the facts ¢; = --- = ¢; = 2 (mod 3) that:

Ou(n* —nm+m?) =0 < n*—nm+m?>=0 (mod M)

n*—nm+m*=0 (mod g) forevery i € {1,...,s}
¢iln and ¢;|m forevery i € {1,..., s}

M|n and M|m

03,(n) — Oy (n)O(m) + O3,(m) =0,

1117

consequently
Ou(n? —nm +m?) = 03,(n) — O (n)Oy(m) + 63,(m)

for every n,m € N.

In the above proof we have used that ©2%,(n) — ©,;(n)Oy(m) + ©%,(m) € {0,1} for every
n,m € N.

Now let us prove the “only if” part.

As we seen in the Lemma 2.2 there are five possibilities according to

(£, £@) € {(0,0),(0,1),(1,0),(1,1),(1,2)}.
(a) Assume that f(1) = 0 and f(2) = 0. We will prove that
f(n) =0 forevery n € N. (6)
It follows from (1) and (2) that

F3)=F%2) = F)f (1) + f*(1) =0 and f(4) = f*(2) =0.

If we assume that f(1) =--- = f(N —1) =0and f(N) # 0, then N > 5. Now we apply
(3) to get

(f(1) = fm)(f(m+1) = f(m) = f(1)) = =f(m)(f(m + 1) — f(m)) =0,
and so

fn+1) = f(m) it f(m)£0.
This with the fact f(N) # 0 implies that

f(n) = f(N) forevery n € N;n > N.
Since N > 5, we have
(N—-1?=(N-1)-14+1*=N?*~-3N+3>5N —3N +3=2N +3> N,
which implies
f((N—1)2—(N—1)-1+12) — F(N) #£0.
This is impossible, because by (1) we obtain that
PN =12 = (N =1) - 1412) = AN = 1) = f(N = 1) f(1) + f2(1) = 0.

Thus, we have proved that if f(1) = f(2) = 0 then (6) is true.
The proof of (a) is finished.
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(b)

Assume that f(1) = 0 and f(2) = 1. We will prove that f(n) = 1 for every n > 2.

Indeed, we infer from (3) that

(£ = 1) (S 1) = F@0) = F) = F0) (Fl+1) = f(m)) =0,
consequently
fn+1) = f(n) it f(n) £0.
Since f(2) = 1, the last relation shows that f(3) = 1, f(4) = 1,..., and f(n) = 1 for

every n > 2.
The proof of (b) is finished.

Assume that f(1) = 1 and f(2) = 0. By applying (3), we have

(£) = £@) (Fn+2) = F) = £2)) = F) (F(+2) = f(m)) =0,
consequently
f(n+2) = f(n) if f(n)#0.

Thus, from the fact f(1) = 1, we have

f(2k+1) =1 forevery k € N. (7
Now we prove that
f*(2k) = f(2k) forevery k € N )
and
£(2k) (f(2k; +2) - 1) — 0 forevery k € N. )

It follows from (3) and (7) that

(r2) = 1) (= £2m) = (F@R) = FO)) (FE+1) = F(20) = F(1)) =0,
which proves (8).
On the other hand, it follows from (3), (8) that

f(2k)f(2k +2) — f(2k) = f(2k)f(2k +2) — f*(2k)

= f(2k)(f(2k +2) — f(2k))

= (f(2k) = f(2)) (F(2k +2) = f(2k) = f(2)) =0,
which proves (9).

Finally, we will prove that

f(2k) =0 forevery k € N. (10)

Assume that there is a M/ € N such that f(2n) = 0 for every n < M, and f(2M) # 0.
Then (8) implies that f(2M) = 1, consequently it follows from (9) that

f(2n) =1 forevery n > M. (11)

Since f(2) =0 and f(4) = f?(2) = 0, we have M > 3.
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Applying (3) for n = 2M — 2 and m = 2, we have f(n) = f(2M —2) = 0, f(m) =
f(2) = 0and so

f((QM —2)? - (2M - 2)-2+ 22> = f2(2M —2) — f(2M —2) - £(2) + f*(2) = 0.
But it follows from M > 3 that
(2M —2)? — (2M —2) -2 422 = 4M?* — 12M + 12 > 2M,

which with (11) implies f<(2M 92— (2M —2)-2+ 22) — 1. This is impossible.
Thus we have proved (10), which with (7) implies that f(n) = x2(n).
The proof of (c1) for M = 2 is finished.

Now assume that f(1) = 1, f(2) = 1 and f(n) # 1 for some n € N.
In this case we have

fB)=r2) = f(f(1)+ f2(1) =1 and f(4) = f*(2) = 1.
It follows from our assumption that there is some number M € N, M > 5 such that
f(M)+#1 and f(n)=1 forevery ne {1,...,M —1}. (12)

First we prove that
F(M) =0. (13)

We infer from (3) that
(F) = £))(FM ) = FOM) = F)) = (FOM) = 1)(F(M +n) = F(AMD) 1) =0
holds for every n € {1,..., M — 1}, consequently
F(M +n) = f(M)+1 forevery ne{1,...,M—1}.
This with n = 1 and n = 2 implies that
f(M+1)=f(M)+1 and f(M+2)=f(M)+1.

On the other hand, we infer from (3) that

—f(M) = (FO) +1= 1) (M) + 1= (M) +1) = 1)
(£ +1) = ) (F(M +2) = F(M +1) = £(1)
0.

Thus, the proof of (13) is finished.
Let
I'={neN| f(n)=1}
It follows from (12) that
{1,...,M -1} C I,

and so we infer from (3), (12) and (13) that if n € I, then

FnM)=1 = fntM)—f ()= (M) = (f(n)=F (M) ) ( (0 M) = f ()= F(M) ) = 0.
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Therefore, we have proved that
f(n+ M) =1 forevery n € I, (14)
which, using the fact {1,..., M — 1} C I shows that
{1,.... M —1,M+1,...,2M -1} C I.

In the same way, we infer from (14) that

N\ {M,2M,...} C I (15)
Now we will prove that
f(Mt) =0 forevery t € N. (16)
Assume that (16) does not hold. Then there is a t, € N, £, > 2 such that
FOM) == f((to— 1)M) =0 and f(teM) # 0.

By applying (3) and (15) withn = 1, m = t,M, we have
(1= £t )(= Fltod)) = (£(1) = F(tM) )(FltoM +1) = F(1) = f(todD)) =0,
consequently
f(toM) € {0,1}.
If f(toM) # 0, then f(tocM) = 1,t¢M € I. This fact with (14) implies that
f(tM) =1 forevery t € Nt > t,. (17)
Now we apply (1) forn = m = (t, — 1) M, we obtain that
7(((to = 12)*) = 1*((to — 1)M) = 0.
This contradicts to (17), because
(to —1)°M = 5(to — 1)* > to,

which with (17) implies
2
7((tto=1m)*) =1.
Thus, the proof of (16) is finished, which proves that

f(n) = ©u(n) 0 it Min (18)
n)= n)=
" 1, if Mo

Now we prove that M is a square-free number and every prime divisor of M is congruent
to 2(mod 3). Let M = P?Q, where Q = ¢y - - - ¢ is a square-free number. Then

M|(PQ)? — PQM + M? = M(Q — PQ + M),
and so we obtain from (18) that
0= f((PQ)* = PQM + M?) = f(PQ) — F(PQ)f(M) + [*(M) = f*(PQ),
which implies

f(PQ) =0 and M = P*Q < PQ.
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This implies that P = 1 and M = @ = ¢q1---¢s. Itis clear to show that (M,3) = 1.
Assume by contradiction that M = 3R, then M | 3R> = R> — R- (2R) + (2R)?, and so
we have from (18)

0= fBR?) = [*(R) — [(R)fQR) + [P2R) = 1> = 1+ 1 = 1,

which is impossible, because M t R, M 12R and f(R) = f(2R) = 1.

Now we prove that ¢ = 2 (mod 3) for every prime ¢ | M. Assume by contradiction that
q|M and ¢ =1 (mod 3). Then

2 —2y+y*=0 (modq) <= (2r—y)*= -3y (mod q).

w

Since ¢ = 1 (mod 3), we have <‘73) = (g) = 1, consequently there are n,m € N such
that n?—nm+m? = 0 (mod M), (nm,q) = 1. Hence M { n,mandso f(n) = f(m) = 1,
infer from (18) that

0:f<n2—nm+m2) = f2(n) — f(n)f(m) + f2(m)=1-1-1+1* =1,

which is impossible.
Thus, we proved the assertions (¢2) and (c) of Theorem 1.

Assume that f(1) =1, f(2) = 1 and f(n) = 1 forevery n € N,n > 3.
Then f(n) = 1 for every n € N, and so the assertion (d) is proved.

Assume that f(1) = 1 and f(2) = 2.
Assume that f(n) = n for every n < N, where N > 3. Then we infer from (3) that

(N=2) (V) =N) = (FV =1 = FO) (H(N =)+ 1) = F(N =) = f(1)) =0,

which proves f(N) = N.
The case (e) is true, and so Theorem 1 is proved. U

4 Proof of Theorem 2

It is clear to check that the functions defined in (A), (B) and (C') satisfy the functional equation
(1). Now we prove the “only if” part.
Assume that f : N — C satisfies

f(n? —2nm +m?) = f3(n) — 2f(n)f(m) + f*(m) forevery n,m € N. (19)

First we note that

f(E* = (f(n + k) — f(n)>2 for every n,k € N. (20)

This follows direct from (19) if m = n + k.
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In the following we shall use the notation [N, z, y, u,v] € S if
N =2 — 2zvy + y* = v — 2uv + v2
It is obvious that if [N, z, y, u, v] € S, then we infer from (19) that
B(N) = f2(x) = 2/ (@) [ () + () = (F2(w) = 2/ (@) (0) + 2(v)) = 0.
One can check that [1, 3,2, 2, 1] € S, consequently
B(1) = £(3) = 2£(3)f(2) + £2(2) = (1) = 2/ F() + (1))
——(f@) - 1) (- @) +2/2) - F() =0.

Thus, we have two cases:
(A) f(3) = f(1)
(B) f(3) # f(1) and f(3) = 2f(2) — f(1).

Let us consider the case (A), i.e. f(3) = f(1). In this case, we obtain from (20) that
) 2
() = 29 = (F(1+2) = F(1) =0
and so the fact [4,4,2,3,1] € S implies

0= B(1) = L2(4) - 20(4) /) + 22) — (£6) - 2D F(1) + (1) = ().

Since f(3) = f(1) and f(2) = f(4) = 0, we may assume that f(n) = f(1)x2(n) holds for every

n < 4. Then we infer from (20) that
2
0= 72 = (fn+ 1) = f(n-1))
which gives

fin+1) = fln=1)= f(Dxa(n—1) = f(n = 1) = f(I)x2(n+1).

Thus, we have proved that f(n) = f(1)x2(n) holds for every n € N. Therefore we infer from
(19) that f(1) € {0, 1}. Thus we have two solutions: either f(n) = 0, or f(n) = x2(n) for every

n € N.

Now we consider the case (B). Assume that f(3) # f(1) and f(3) = 2f(2) — f(1). Then

f(2) — f(1) # 0. We infer from the fact [4,5,3,3,1] € S that

B(1) = f(5) = 2£(5)(3) + F3) = (£3) = 2/(3) (1) + /(1)
= (#65) = ) (£65) = 2f3) + (1))
= (£6) = 1) (£65) = 4£(2) +3(1)) = 0.
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First we prove that f(5) — f(1) # 0, consequently
f(5) =4f(2) =3f(1). 2D
Assume that f(5) = f(1). Then we infer from the facts [1, 5,4, 4,3] € S and
Fd) = (f(3) = f(1)) =4(f(2) - f(1))* = 4f(1)
that
B(1) = f2(5) = 2/ () (4) + £2(4) = (f2(4) = 20 (1) f(3) + 1*(3))
= [2(1) = 8/%(1) + 8/(1)(2£(2) — (1)) — (2f(2) = f(1))*
=4(f2) - r) (410 = f(2)) = 0.

Since f(2) — f(1) # 0, the last relation implies that f(2) = 4f(1), and so f(3) = 2f(2)— f(1) =
7f(1). Since f(3) = 7f(1) # f(1), we have f(1) # 0. But one can check that [4,5,3,4,2] € S,
consequently

B(1) = [2(5) = 2/(5)f3) + F3) = (12(4) = 2/ ()1 (2) + /*(2))
= JA() — 1) (1) +4972(1) — (1672(1) — 32/ (1) £ (1) + 167%(1))
=36%(1) = 0.
This is impossible, because f(1) # 0. Therefore, we have proved that (21) is true.

Now assume that (21) is true, i.e., f(5) = 4f(2) — 3f(1). Then we infer from the facts
f(3)=2f(2) — f(1), f(4) =4f(1) and [1,5,4,4, 3] € S that

B(1) = 25) = 20(5)f(8) + F(4) — (4 — 20 @)1 3) + 1*3))
= (47 —37()) 87 (47@) —371)) + (4£(V))
(1) + 87 (27@) — 7)) ~ (2£2) ~ £(1))

= 12(f(2) - F ) (F) - 2(1))) =0.
Since f(2) — f(1) # 0, the last relation shows that f(2) = 2f(1).
On other hand, we infer from (20) that f(1) = f(1?) = (f(2) — f(1))* = f%(1), which with

the fact f(2) — f(1) = 2f(1) — f(1) = f(1) # 0 implies that f(1) = 1. Consequently

f)=1,12)=2f(1)=2,/3) =2F(2) = f(1) =3f(1) =3 and f(4) =4f(1) = 4.

Assume that f(n) = n forevery n < N, where N > 4. The we obtain from (20) that

1= £12) = (FV) = F(N 1)) = (F() (N 1)) = PAN) =2V 1) f(N) + (N ~17

and
2

4= f4) = £@) = (FV) = 7V = 2)) " = (FON) — (N 2))
= (V) — 2N~ 2)f(N) + (N~ 2)”
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These imply that
—2(N =2)f(N)+ (N =22 (2(N-1Df(N)+(N-1)*)=4—-1=3

and so 2f(N) = 2N. Thus we have proved that f(IN) = N, consequently f(n) = n for every
n € N.
Theorem 2 is proved. ]

5 Proof of the corollaries

Since f € M, we have f(1) = 1. It is obvious that if f(M) = f(q1---qs) = f(q1) - f(gs) =0
and M is minimal, then M = g € P. Therefore, Corollary 1 and Corollary 2 are true. U
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