Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275
Vol. 28, 2022, No. 2, 240-251
DOI: 10.7546/nntdm.2022.28.2.240-251

On the equation

$$
f\left(n^{2}-D n m+m^{2}\right)=f^{2}(n)-D f(n) f(m)+f^{2}(m)
$$

B. M. Phong ${ }^{1}$ and R. B. Szeidl ${ }^{2}$
${ }^{1}$ Department of Computer Algebra, University of Eötvös Loránd 1117 Budapest, Hungary
e-mail: bui@inf.elte.hu
${ }^{2}$ Department of Computer Algebra, University of Eötvös Loránd 1117 Budapest, Hungary
e-mail: betti@inf.elte.hu

Received: 29 August 2021
Accepted: 28 April 2022

Revised: 23 April 2022
Online First: 29 April 2022

Abstract: We give all solutions $f: \mathbb{N} \rightarrow \mathbb{C}$ of the functional equation

$$
f\left(n^{2}-D n m+m^{2}\right)=f^{2}(n)-D f(n) f(m)+f^{2}(m)
$$

where $D \in\{1,2\}$.
Keywords: Arithmetical function, Functional equation, Dirichlet character.
2020 Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.

1 Introduction

Let, as usual, $\mathcal{P}, \mathbb{N}, \mathbb{C}$ be the sets of primes, positive integers and complex numbers, respectively. A function $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if

$$
f(n m)=f(n) f(m) \text { for every } n, m \in \mathbb{N},(n, m)=1
$$

Let \mathcal{M} be the set of complex-valued multiplicative functions.
A characterization of the identity function was studied by C. Spiro [7], J.-M. De Koninck, I. Kátai and B. M. Phong [1], B. M. Phong [4,5] and by others.

In 1992, C. Spiro [7] proved that if $f \in \mathcal{M}$ satisfies

$$
f(p+q)=f(p)+f(q) \quad(\forall p, q \in \mathcal{P}) \text { and } f\left(p_{0}\right) \neq 0 \quad \text { for some } \quad p_{0} \in \mathcal{P},
$$

then $f(n)$ is the identity function.
In 1997, J.-M. De Koninck, I. Kátai and B. M. Phong [1] proved that if a function $f \in \mathcal{M}$ satisfies the condition

$$
f\left(p+m^{2}\right)=f(p)+f\left(m^{2}\right) \text { for every } p \in \mathcal{P}, m \in \mathbb{N},
$$

then $f(n)=n$ for all $n \in \mathbb{N}$.
Recently Poo-Sung Park [3] proved the following results:
Theorem A. If a multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
f\left(n^{2}+n m+m^{2}\right)=f^{2}(n)+f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N},
$$

then f is the identity function.
Theorem B. A multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
f\left(n^{2}-n m+m^{2}\right)=f^{2}(n)-f(n) f(m)+f^{2}(m)
$$

if and only if f is one of the following:

1. the identity function $f(n)=n$;
2. the constant function $f(n)=1$;
3. function f_{p} defined by:

$$
f_{p}(n)=\left\{\begin{array}{lll}
0, & \text { if } p \mid n \\
1, & \text { if } & p \nmid n
\end{array}\right.
$$

for some prime $p \equiv 2(\bmod 3)$.
For some generalizations of Theorem A we refer the works of B. M. M. Khanh [2], B. M. Phong and R. B. Szeidl [6]. They prove that if $D \in\{1,2,3\}$ and an arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfy the conditions $f(1)=1$ and

$$
f\left(n^{2}+D n m+m^{2}\right)=f^{2}(n)+D f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N},
$$

then f is the identity function.
In this note, we improve Theorem B as follows:
Theorem 1. An arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
f\left(n^{2}-n m+m^{2}\right)=f^{2}(n)-f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N}
$$

if and only if f is one of the following:
(a) $f(n)=0$ for every $n \in \mathbb{N}$,
(b) $f(1)=0$ and $f(n)=1$ for every $n \in \mathbb{N}, n \geq 2$,
(c) $f(n)=\Theta_{M}(n)=\left\{\begin{array}{lll}0, & \text { if } & M \mid n \\ 1, & \text { if } & M \nmid n,\end{array}\right.$ for every $n \in \mathbb{N}$, where
(c1) either $M=2$,
(c2) or $M=q_{1} \cdots q_{s} \geq 5$ is a square-free number, $q_{i} \equiv 2(\bmod 3)(i=1, \ldots, s)$,
(d) $f(n)=1$ for every $n \in \mathbb{N}$,
(e) $f(n)=n$ for every $n \in \mathbb{N}$.

Theorem 2. An arithmetical function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
f\left(n^{2}-2 n m+m^{2}\right)=f^{2}(n)-2 f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N}
$$

if and only if f is one of the following:
(A) $f(n)=0$ for every $n \in \mathbb{N}$,
(B) $f(n)=\chi_{2}(n)$ for every $n \in \mathbb{N}$,
(C) $f(n)=n$ for every $n \in \mathbb{N}$,
where $\chi_{2}(n)$ is a Dirichlet character $(\bmod 2)$.
We infer from Theorem 1 and Theorem 2 the following results.
Corollary 1. (Poo-Sung Park, Theorem \boldsymbol{A}). A function $f \in \mathcal{M}$ satisfies

$$
f\left(n^{2}-n m+m^{2}\right)=f^{2}(n)-f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N}
$$

if and only if $f \in\left\{\mathbb{U}, \chi_{q}, I\right\}$, where $\mathbb{U}(n)=1, I(n)=n$ for every $n \in \mathbb{N}$ and χ_{q} is the Dirichlet principal character $(\bmod q), q \in \mathcal{P}, q \equiv 2(\bmod 3)$.
Corollary 2. A multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
f\left(n^{2}-2 n m+m^{2}\right)=f^{2}(n)-2 f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N}
$$

if and only if $f \in\left\{\chi_{2}, I\right\}$, where $I(n)=n$ for every $n \in \mathbb{N}$ and χ_{2} is the Dirichlet character $(\bmod 2)$.

2 Lemmas

Assume that $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
f\left(n^{2}-n m+m^{2}\right)=f^{2}(n)-f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N} \tag{1}
\end{equation*}
$$

First we prove the following lemma.
Lemma 2.1. Assume that $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies (1). Then

$$
\begin{equation*}
f\left(k^{2}\right)=f^{2}(k) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(f(n)-f(m))(f(n+m)-f(n)-f(m))=0 \tag{3}
\end{equation*}
$$

hold for every $k, n, m \in \mathbb{N}$.

Proof. The relation (2) is obvious, because by taking $n=m=k$ into (1), we have

$$
f\left(k^{2}\right)=f\left(k^{2}-k \cdot k+k^{2}\right)=f^{2}(k)-f(k) \cdot f(k)+f^{2}(k)=f^{2}(k) .
$$

In order to prove (3), we start with the relation

$$
(n+m)^{2}-(n+m) m+m^{2}=(n+m)^{2}-(n+m) n+n^{2}
$$

consequently it follows from (1) that

$$
f^{2}(n+m)-f(n+m) f(m)+f^{2}(m)=f^{2}(n+m)-f(n+m) f(n)+f^{2}(n)
$$

and so

$$
(f(n)-f(m))(f(n+m)-f(n)-f(m))=0
$$

holds for every $n, m \in \mathbb{N}$. Thus, (3) and Lemma 2.1 are true.
Lemma 2.2. Assume that $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies (1). Then

$$
\begin{equation*}
(f(1), f(2)) \in\{(0,0),(0,1),(1,0),(1,1),(1,2)\} . \tag{4}
\end{equation*}
$$

Proof. It is obvious from (2) that

$$
f(1)=f^{2}(1) \text {, i.e., } f(1) \in\{0,1\} .
$$

First, we infer from (1) and from $3=2^{2}-2 \cdot 1+1^{2}, 3^{2}-3 \cdot 2+2^{2}=3^{2}-3 \cdot 1+1^{2}$ that

$$
f(3)=f^{2}(2)-f(2) \cdot f(1)+f^{2}(1)
$$

and

$$
\begin{align*}
0 & =f^{2}(3)-f(3) \cdot f(2)+f^{2}(2)-\left(f^{2}(3)-f(3) \cdot f(1)+f^{2}(1)\right) \\
& =-f(3)(f(2)-f(1))+(f(2)-f(1))(f(2)+f(1)) \\
& =-(f(2)-f(1))(f(3)-f(2)-f(1)) \tag{5}\\
& =-(f(2)-f(1))\left(f^{2}(2)-f(2) f(1)+f^{2}(1)-f(2)-f(1)\right) .
\end{align*}
$$

By using (5), it is obvious that

$$
\text { if } f(1)=0 \text {, then } f(2)\left(f^{2}(2)-f(2)\right)=f^{2}(2)(f(2)-1)=0
$$

and

$$
\text { if } f(1)=1 \text {, then }(f(2)-1)\left(f^{2}(2)-2 f(2)\right)=f(2)(f(2)-1)(f(2)-2)=0
$$

The last two relations prove (4).
Lemma 2.2 is proved.

3 Proof of Theorem 1

It is clear to check that the functions defined in $(a),(b),(d)$ and (e) satisfy the functional equation (1). Let us consider the case (c). If $M=2$, then $f(n)=\Theta_{2}(n)=\chi_{2}(n)$ is the Dirichlet character $(\bmod 2)$ and it is trivial that

$$
\chi_{2}\left(n^{2}-n m+m^{2}\right)=\chi_{2}^{2}(n)-\chi_{2}(n) \chi_{2}(m)+\chi_{2}^{2}(m) \text { for every } n, m \in \mathbb{N} .
$$

Now we consider the case ($c 2$). Let $M=q_{1} \cdots q_{s} \geq 5$ be a square-free number and $q_{i} \equiv 2(\bmod 3)$ for every $i \in\{1, \ldots, s\}$. Let $f(n)=\Theta_{M}(n)$ be a function defined in (c). Then we infer from the facts $q_{1} \equiv \cdots \equiv q_{s} \equiv 2(\bmod 3)$ that:

$$
\begin{aligned}
\Theta_{M}\left(n^{2}-n m+m^{2}\right)=0 & \Longleftrightarrow n^{2}-n m+m^{2} \equiv 0 \quad(\bmod M) \\
& \Longleftrightarrow n^{2}-n m+m^{2} \equiv 0 \quad\left(\bmod q_{i}\right) \text { for every } i \in\{1, \ldots, s\} \\
& \Longleftrightarrow q_{i} \mid n \text { and } q_{i} \mid m \text { for every } i \in\{1, \ldots, s\} \\
& \Longleftrightarrow M \mid n \text { and } M \mid m \\
& \Longleftrightarrow \Theta_{M}^{2}(n)-\Theta_{M}(n) \Theta_{M}(m)+\Theta_{M}^{2}(m)=0,
\end{aligned}
$$

consequently

$$
\Theta_{M}\left(n^{2}-n m+m^{2}\right)=\Theta_{M}^{2}(n)-\Theta_{M}(n) \Theta_{M}(m)+\Theta_{M}^{2}(m)
$$

for every $n, m \in \mathbb{N}$.
In the above proof we have used that $\Theta_{M}^{2}(n)-\Theta_{M}(n) \Theta_{M}(m)+\Theta_{M}^{2}(m) \in\{0,1\}$ for every $n, m \in \mathbb{N}$.

Now let us prove the "only if" part.
As we seen in the Lemma 2.2 there are five possibilities according to

$$
(f(1), f(2)) \in\{(0,0),(0,1),(1,0),(1,1),(1,2)\} .
$$

(a) Assume that $f(1)=0$ and $f(2)=0$. We will prove that

$$
\begin{equation*}
f(n)=0 \text { for every } n \in \mathbb{N} . \tag{6}
\end{equation*}
$$

It follows from (1) and (2) that

$$
f(3)=f^{2}(2)-f(2) f(1)+f^{2}(1)=0 \text { and } f(4)=f^{2}(2)=0
$$

If we assume that $f(1)=\cdots=f(N-1)=0$ and $f(N) \neq 0$, then $N \geq 5$. Now we apply (3) to get

$$
(f(1)-f(m))(f(m+1)-f(m)-f(1))=-f(m)(f(m+1)-f(m))=0
$$

and so

$$
f(m+1)=f(m) \quad \text { if } \quad f(m) \neq 0
$$

This with the fact $f(N) \neq 0$ implies that

$$
f(n)=f(N) \text { for every } n \in \mathbb{N}, n \geq N
$$

Since $N \geq 5$, we have

$$
(N-1)^{2}-(N-1) \cdot 1+1^{2}=N^{2}-3 N+3 \geq 5 N-3 N+3=2 N+3>N
$$

which implies

$$
f\left((N-1)^{2}-(N-1) \cdot 1+1^{2}\right)=f(N) \neq 0
$$

This is impossible, because by (1) we obtain that

$$
f\left((N-1)^{2}-(N-1) \cdot 1+1^{2}\right)=f^{2}(N-1)-f(N-1) \cdot f(1)+f^{2}(1)=0
$$

Thus, we have proved that if $f(1)=f(2)=0$ then (6) is true.
The proof of (a) is finished.
(b) Assume that $f(1)=0$ and $f(2)=1$. We will prove that $f(n)=1$ for every $n \geq 2$. Indeed, we infer from (3) that

$$
(f(n)-f(1))(f(n+1)-f(n)-f(1))=f(n)(f(n+1)-f(n))=0
$$

consequently

$$
f(n+1)=f(n) \quad \text { if } \quad f(n) \neq 0 .
$$

Since $f(2)=1$, the last relation shows that $f(3)=1, f(4)=1, \ldots$, and $f(n)=1$ for every $n \geq 2$.
The proof of (b) is finished.
(c1) Assume that $f(1)=1$ and $f(2)=0$. By applying (3), we have

$$
(f(n)-f(2))(f(n+2)-f(n)-f(2))=f(n)(f(n+2)-f(n))=0
$$

consequently

$$
f(n+2)=f(n) \quad \text { if } \quad f(n) \neq 0
$$

Thus, from the fact $f(1)=1$, we have

$$
\begin{equation*}
f(2 k+1)=1 \text { for every } k \in \mathbb{N} . \tag{7}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
f^{2}(2 k)=f(2 k) \text { for every } k \in \mathbb{N} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(2 k)(f(2 k+2)-1)=0 \text { for every } k \in \mathbb{N} \tag{9}
\end{equation*}
$$

It follows from (3) and (7) that

$$
(f(2 k)-1)(-f(2 k))=(f(2 k)-f(1))(f(2 k+1)-f(2 k)-f(1))=0,
$$

which proves (8).
On the other hand, it follows from (3), (8) that

$$
\begin{aligned}
f(2 k) f(2 k+2)-f(2 k) & =f(2 k) f(2 k+2)-f^{2}(2 k) \\
& =f(2 k)(f(2 k+2)-f(2 k)) \\
& =(f(2 k)-f(2))(f(2 k+2)-f(2 k)-f(2))=0,
\end{aligned}
$$

which proves (9).
Finally, we will prove that

$$
\begin{equation*}
f(2 k)=0 \text { for every } k \in \mathbb{N} . \tag{10}
\end{equation*}
$$

Assume that there is a $M \in \mathbb{N}$ such that $f(2 n)=0$ for every $n<M$, and $f(2 M) \neq 0$. Then (8) implies that $f(2 M)=1$, consequently it follows from (9) that

$$
\begin{equation*}
f(2 n)=1 \text { for every } n \geq M . \tag{11}
\end{equation*}
$$

Since $f(2)=0$ and $f(4)=f^{2}(2)=0$, we have $M \geq 3$.

Applying (3) for $n=2 M-2$ and $m=2$, we have $f(n)=f(2 M-2)=0, f(m)=$ $f(2)=0$ and so

$$
f\left((2 M-2)^{2}-(2 M-2) \cdot 2+2^{2}\right)=f^{2}(2 M-2)-f(2 M-2) \cdot f(2)+f^{2}(2)=0
$$

But it follows from $M \geq 3$ that

$$
(2 M-2)^{2}-(2 M-2) \cdot 2+2^{2}=4 M^{2}-12 M+12>2 M
$$

which with (11) implies $f\left((2 M-2)^{2}-(2 M-2) \cdot 2+2^{2}\right)=1$. This is impossible.
Thus we have proved (10), which with (7) implies that $f(n)=\chi_{2}(n)$.
The proof of $(c 1)$ for $M=2$ is finished.
(c2) Now assume that $f(1)=1, f(2)=1$ and $f(n) \neq 1$ for some $n \in \mathbb{N}$.
In this case we have

$$
f(3)=f^{2}(2)-f(2) f(1)+f^{2}(1)=1 \text { and } f(4)=f^{2}(2)=1 .
$$

It follows from our assumption that there is some number $M \in \mathbb{N}, M \geq 5$ such that

$$
\begin{equation*}
f(M) \neq 1 \text { and } f(n)=1 \text { for every } n \in\{1, \ldots, M-1\} . \tag{12}
\end{equation*}
$$

First we prove that

$$
\begin{equation*}
f(M)=0 \tag{13}
\end{equation*}
$$

We infer from (3) that
$(f(M)-f(n))(f(M+n)-f(M)-f(n))=(f(M)-1)(f(M+n)-f(M)-1)=0$
holds for every $n \in\{1, \ldots, M-1\}$, consequently

$$
f(M+n)=f(M)+1 \text { for every } n \in\{1, \ldots, M-1\} .
$$

This with $n=1$ and $n=2$ implies that

$$
f(M+1)=f(M)+1 \text { and } f(M+2)=f(M)+1 .
$$

On the other hand, we infer from (3) that

$$
\begin{aligned}
-f(M) & =(f(M)+1-1)(f(M)+1-(f(M)+1)-1) \\
& =(f(M+1)-f(1))(f(M+2)-f(M+1)-f(1)) \\
& =0
\end{aligned}
$$

Thus, the proof of (13) is finished.
Let

$$
I:=\{n \in \mathbb{N} \mid f(n)=1\} .
$$

It follows from (12) that

$$
\{1, \ldots, M-1\} \subseteq I
$$

and so we infer from (3), (12) and (13) that if $n \in I$, then

$$
f(n+M)-1=f(n+M)-f(n)-f(M)=(f(n)-f(M))(f(n+M)-f(n)-f(M))=0 .
$$

Therefore, we have proved that

$$
\begin{equation*}
f(n+M)=1 \text { for every } n \in I, \tag{14}
\end{equation*}
$$

which, using the fact $\{1, \ldots, M-1\} \subseteq I$ shows that

$$
\{1, \ldots, M-1, M+1, \ldots, 2 M-1\} \subseteq I
$$

In the same way, we infer from (14) that

$$
\begin{equation*}
\mathbb{N} \backslash\{M, 2 M, \ldots\} \subseteq I \tag{15}
\end{equation*}
$$

Now we will prove that

$$
\begin{equation*}
f(M t)=0 \text { for every } t \in \mathbb{N} . \tag{16}
\end{equation*}
$$

Assume that (16) does not hold. Then there is a $t_{0} \in \mathbb{N}, t_{0} \geq 2$ such that

$$
f(M)=\cdots=f\left(\left(t_{0}-1\right) M\right)=0 \text { and } f\left(t_{0} M\right) \neq 0 .
$$

By applying (3) and (15) with $n=1, m=t_{0} M$, we have

$$
\left(1-f\left(t_{0} M\right)\right)\left(-f\left(t_{0} M\right)\right)=\left(f(1)-f\left(t_{0} M\right)\right)\left(f\left(t_{0} M+1\right)-f(1)-f\left(t_{0} M\right)\right)=0
$$

consequently

$$
f\left(t_{0} M\right) \in\{0,1\} .
$$

If $f\left(t_{0} M\right) \neq 0$, then $f\left(t_{0} M\right)=1, t_{0} M \in I$. This fact with (14) implies that

$$
\begin{equation*}
f(t M)=1 \text { for every } t \in \mathbb{N}, t \geq t_{0} . \tag{17}
\end{equation*}
$$

Now we apply (1) for $n=m=\left(t_{0}-1\right) M$, we obtain that

$$
f\left(\left(\left(t_{0}-1\right) M\right)^{2}\right)=f^{2}\left(\left(t_{0}-1\right) M\right)=0
$$

This contradicts to (17), because

$$
\left(t_{0}-1\right)^{2} M=5\left(t_{0}-1\right)^{2} \geq t_{0}
$$

which with (17) implies

$$
f\left(\left(\left(t_{0}-1\right) M\right)^{2}\right)=1
$$

Thus, the proof of (16) is finished, which proves that

$$
f(n)=\Theta_{M}(n)=\left\{\begin{array}{lll}
0, & \text { if } & M \mid n \tag{18}\\
1, & \text { if } & M \nmid n
\end{array}\right.
$$

Now we prove that M is a square-free number and every prime divisor of M is congruent to $2(\bmod 3)$. Let $M=P^{2} Q$, where $Q=q_{1} \cdots q_{s}$ is a square-free number. Then

$$
M \mid(P Q)^{2}-P Q M+M^{2}=M(Q-P Q+M)
$$

and so we obtain from (18) that

$$
0=f\left((P Q)^{2}-P Q M+M^{2}\right)=f^{2}(P Q)-f(P Q) f(M)+f^{2}(M)=f^{2}(P Q)
$$

which implies

$$
f(P Q)=0 \text { and } M=P^{2} Q \leq P Q
$$

This implies that $P=1$ and $M=Q=q_{1} \cdots q_{s}$. It is clear to show that $(M, 3)=1$. Assume by contradiction that $M=3 R$, then $M \mid 3 R^{2}=R^{2}-R \cdot(2 R)+(2 R)^{2}$, and so we have from (18)

$$
0=f\left(3 R^{2}\right)=f^{2}(R)-f(R) f(2 R)+f^{2}(2 R)=1^{2}-1^{2}+1^{2}=1,
$$

which is impossible, because $M \nmid R, M \nmid 2 R$ and $f(R)=f(2 R)=1$.
Now we prove that $q \equiv 2(\bmod 3)$ for every prime $q \mid M$. Assume by contradiction that $q \mid M$ and $q \equiv 1(\bmod 3)$. Then

$$
x^{2}-x y+y^{2} \equiv 0 \quad(\bmod q) \Longleftrightarrow(2 x-y)^{2} \equiv-3 y^{2} \quad(\bmod q)
$$

Since $q \equiv 1(\bmod 3)$, we have $\left(\frac{-3}{q}\right)=\left(\frac{q}{3}\right)=1$, consequently there are $n, m \in \mathbb{N}$ such that $n^{2}-n m+m^{2} \equiv 0(\bmod M),(n m, q)=1$. Hence $M \nmid n, m$ and so $f(n)=f(m)=1$, infer from (18) that

$$
0=f\left(n^{2}-n m+m^{2}\right)=f^{2}(n)-f(n) f(m)+f^{2}(m)=1-1 \cdot 1+1^{2}=1,
$$

which is impossible.
Thus, we proved the assertions $(c 2)$ and (c) of Theorem 1.
(d) Assume that $f(1)=1, f(2)=1$ and $f(n)=1$ for every $n \in \mathbb{N}, n \geq 3$.

Then $f(n)=1$ for every $n \in \mathbb{N}$, and so the assertion (d) is proved.
(e) Assume that $f(1)=1$ and $f(2)=2$.

Assume that $f(n)=n$ for every $n<N$, where $N \geq 3$. Then we infer from (3) that

$$
(N-2)(f(N)-N)=(f(N-1)-f(1))(f((N-1)+1)-f(N-1)-f(1))=0,
$$

which proves $f(N)=N$.
The case (e) is true, and so Theorem 1 is proved.

4 Proof of Theorem 2

It is clear to check that the functions defined in $(A),(B)$ and (C) satisfy the functional equation (1). Now we prove the "only if" part.

Assume that $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
f\left(n^{2}-2 n m+m^{2}\right)=f^{2}(n)-2 f(n) f(m)+f^{2}(m) \text { for every } n, m \in \mathbb{N} \tag{19}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
f\left(k^{2}\right)=(f(n+k)-f(n))^{2} \text { for every } n, k \in \mathbb{N} \tag{20}
\end{equation*}
$$

This follows direct from (19) if $m=n+k$.

In the following we shall use the notation $[N, x, y, u, v] \in \mathcal{S}$ if

$$
N=x^{2}-2 x y+y^{2}=u^{2}-2 u v+v^{2} .
$$

It is obvious that if $[N, x, y, u, v] \in \mathcal{S}$, then we infer from (19) that

$$
E(N):=f^{2}(x)-2 f(x) f(y)+f^{2}(y)-\left(f^{2}(u)-2 f(u) f(v)+f^{2}(v)\right)=0
$$

One can check that $[1,3,2,2,1] \in \mathcal{S}$, consequently

$$
\begin{aligned}
E(1) & =f^{2}(3)-2 f(3) f(2)+f^{2}(2)-\left(f^{2}(2)-2 f(2) f(1)+f^{2}(1)\right) \\
& =-(f(3)-f(1))(-f(3)+2 f(2)-f(1))=0 .
\end{aligned}
$$

Thus, we have two cases:
(A) $f(3)=f(1)$
(B) $f(3) \neq f(1)$ and $f(3)=2 f(2)-f(1)$.

Let us consider the case (A), i.e. $f(3)=f(1)$. In this case, we obtain from (20) that

$$
f(4)=f\left(2^{2}\right)=(f(1+2)-f(1))^{2}=0
$$

and so the fact $[4,4,2,3,1] \in \mathcal{S}$ implies

$$
0=E(4)=f^{2}(4)-2 f(4) f(2)+f^{2}(2)-\left(f^{2}(3)-2 f(3) f(1)+f^{2}(1)\right)=f^{2}(2)
$$

Since $f(3)=f(1)$ and $f(2)=f(4)=0$, we may assume that $f(n)=f(1) \chi_{2}(n)$ holds for every $n \leq 4$. Then we infer from (20) that

$$
0=f\left(2^{2}\right)=(f(n+1)-f(n-1))^{2}
$$

which gives

$$
f(n+1)=f(n-1)=f(1) \chi_{2}(n-1)=f(n-1)=f(1) \chi_{2}(n+1)
$$

Thus, we have proved that $f(n)=f(1) \chi_{2}(n)$ holds for every $n \in \mathbb{N}$. Therefore we infer from (19) that $f(1) \in\{0,1\}$. Thus we have two solutions: either $f(n)=0$, or $f(n)=\chi_{2}(n)$ for every $n \in \mathbb{N}$.

Now we consider the case (B). Assume that $f(3) \neq f(1)$ and $f(3)=2 f(2)-f(1)$. Then $f(2)-f(1) \neq 0$. We infer from the fact $[4,5,3,3,1] \in \mathcal{S}$ that

$$
\begin{aligned}
E(4) & =f^{2}(5)-2 f(5) f(3)+f^{2}(3)-\left(f^{2}(3)-2 f(3) f(1)+f^{2}(1)\right) \\
& =(f(5)-f(1))(f(5)-2 f(3)+f(1)) \\
& =(f(5)-f(1))(f(5)-4 f(2)+3 f(1))=0 .
\end{aligned}
$$

First we prove that $f(5)-f(1) \neq 0$, consequently

$$
\begin{equation*}
f(5)=4 f(2)-3 f(1) . \tag{21}
\end{equation*}
$$

Assume that $f(5)=f(1)$. Then we infer from the facts $[1,5,4,4,3] \in \mathcal{S}$ and

$$
f(4)=(f(3)-f(1))^{2}=4(f(2)-f(1))^{2}=4 f(1)
$$

that

$$
\begin{aligned}
E(1) & =f^{2}(5)-2 f(5) f(4)+f^{2}(4)-\left(f^{2}(4)-2 f(4) f(3)+f^{2}(3)\right) \\
& =f^{2}(1)-8 f^{2}(1)+8 f(1)(2 f(2)-f(1))-(2 f(2)-f(1))^{2} \\
& =4(f(2)-f(1))(4 f(1)-f(2))=0 .
\end{aligned}
$$

Since $f(2)-f(1) \neq 0$, the last relation implies that $f(2)=4 f(1)$, and so $f(3)=2 f(2)-f(1)=$ $7 f(1)$. Since $f(3)=7 f(1) \neq f(1)$, we have $f(1) \neq 0$. But one can check that $[4,5,3,4,2] \in \mathcal{S}$, consequently

$$
\begin{aligned}
E(4) & =f^{2}(5)-2 f(5) f(3)+f^{2}(3)-\left(f^{2}(4)-2 f(4) f(2)+f^{2}(2)\right) \\
& =f^{2}(1)-14 f(1) f(1)+49 f^{2}(1)-\left(16 f^{2}(1)-32 f(1) f(1)+16 f^{2}(1)\right) \\
& =36 f^{2}(1)=0 .
\end{aligned}
$$

This is impossible, because $f(1) \neq 0$. Therefore, we have proved that (21) is true.
Now assume that (21) is true, i.e., $f(5)=4 f(2)-3 f(1)$. Then we infer from the facts $f(3)=2 f(2)-f(1), f(4)=4 f(1)$ and $[1,5,4,4,3] \in \mathcal{S}$ that

$$
\begin{aligned}
E(1)= & f^{2}(5)-2 f(5) f(4)+f^{2}(4)-\left(f^{2}(4)-2 f(4) f(3)+f^{2}(3)\right) \\
= & (4 f(2)-3 f(1))^{2}-8 f(1)(4 f(2)-3 f(1))+(4 f(1))^{2} \\
& -(4 f(1))^{2}+8 f(1)(2 f(2)-f(1))-(2 f(2)-f(1))^{2} \\
= & 12(f(2)-f(1))(f(2)-2 f(1)))=0 .
\end{aligned}
$$

Since $f(2)-f(1) \neq 0$, the last relation shows that $f(2)=2 f(1)$.
On other hand, we infer from (20) that $f(1)=f\left(1^{2}\right)=(f(2)-f(1))^{2}=f^{2}(1)$, which with the fact $f(2)-f(1)=2 f(1)-f(1)=f(1) \neq 0$ implies that $f(1)=1$. Consequently

$$
f(1)=1, f(2)=2 f(1)=2, f(3)=2 F(2)-f(1)=3 f(1)=3 \text { and } f(4)=4 f(1)=4 .
$$

Assume that $f(n)=n$ for every $n \leq N$, where $N \geq 4$. The we obtain from (20) that $1=f\left(1^{2}\right)=(f(N)-f(N-1))^{2}=(f(N)-(N-1))^{2}=f^{2}(N)-2(N-1) f(N)+(N-1)^{2}$ and

$$
\begin{aligned}
4 & =f(4)=f\left(2^{2}\right)=(f(N)-f(N-2))^{2}=(f(N)-(N-2))^{2} \\
& =f^{2}(N)-2(N-2) f(N)+(N-2)^{2} .
\end{aligned}
$$

These imply that

$$
-2(N-2) f(N)+(N-2)^{2}-\left(-2(N-1) f(N)+(N-1)^{2}\right)=4-1=3
$$

and so $2 f(N)=2 N$. Thus we have proved that $f(N)=N$, consequently $f(n)=n$ for every $n \in \mathbb{N}$.

Theorem 2 is proved.

5 Proof of the corollaries

Since $f \in \mathcal{M}$, we have $f(1)=1$. It is obvious that if $f(M)=f\left(q_{1} \cdots q_{s}\right)=f\left(q_{1}\right) \cdots f\left(q_{s}\right)=0$ and M is minimal, then $M=q \in \mathcal{P}$. Therefore, Corollary 1 and Corollary 2 are true.

References

[1] De Koninck, J.-M., Kátai, I., \& Phong, B. M. (1997). A new characteristic of the identity function. Journal of Number Theory, 63(2), 325-338.
[2] Khanh, B. M. M. (2021). Characterization of the identity function with an equation function. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52, 195-216.
[3] Park, P.-S. (in press). Multiplicative functions commutable with binary quadratic forms $x^{2} \pm x y+y^{2}$. Bulletin of the Korean Mathematical Society.
[4] Phong, B. M. (2006). A characterization of the identity function with the equation of Hosszú type. Publicationes Mathematicae Debrecen, 69(1-2), 219-226.
[5] Phong, B. M. (2016). A characterization of identity with function equation II. Acta Mathematica Hungarica, 148(2), 450-465.
[6] Phong, B. M., \& Szeidl, R. B. (2021). On the equation $f\left(n^{2}+n m+m^{2}\right)=f(n)^{2}+$ $f(n) f(m)+f(m)^{2}$. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica, 52, 255-278.
[7] Spiro, C. (1992). Additive uniqueness set for arithmetic functions. Journal of Number Theory, 42, 232-246.

