Sums involving generalized harmonic and Daehee numbers

Neşe Ömür¹ and Sibel Koparal²

¹ Department of Mathematics, University of Kocaeli
41380 İzmit, Kocaeli, Turkey
e-mail: neseomur@gmail.com

² Department of Mathematics, University of Bursa Uludağ
16059 Nilüfer, Bursa, Turkey
e-mail: sibelparal1@gmail.com

Received: 24 January 2021 Revised: 11 February 2022
Accepted: 16 February 2022 Online First: 17 February 2022

Abstract: In this paper, we establish some sums involving generalized harmonic and Daehee numbers which are derived from the generating functions. For example, for \(n, r \geq 1 \),

\[
\sum_{i=0}^{n} H(i, r-1, \alpha) H_{n-i}^r(\alpha) = \sum_{l_1+l_2+\cdots+l_{r+1}=n} H_{l_1}(\alpha) H_{l_2}(\alpha) \cdots H_{l_{r+1}}(\alpha).
\]

Keywords: Sums, Generalized harmonic numbers, Daehee numbers.

2020 Mathematics Subject Classification: 05A15, 05A19, 11B73.

1 Introduction

The harmonic numbers are defined by

\[
H_0 = 0 \quad \text{and} \quad H_n = \sum_{i=1}^{n} \frac{1}{i} \quad \text{for} \quad n \geq 1.
\]

It is well known that

\[
H_n = \int_0^1 \frac{1 - t^n}{1 - t} \, dt = \gamma + \psi(n + 1),
\]
where \(\gamma \) denotes the Euler–Mascheroni constant, defined by

\[
\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{i} - \log n \right) = -\psi'(1) \approx 0.57721566490153286066512 \ldots
\]

Harmonic numbers are closely related to the Riemann \(\xi \)-function defined by

\[
\xi(s) = \sum_{i=1}^{\infty} \frac{1}{i^s} = \prod_p \left(1 - p^{-s}\right)^{-1},
\]

where the product is over all primes \(p \).

These numbers have been generalized by some authors [1, 2, 4, 9, 16, 18]. In [9], for any \(\alpha \in \mathbb{R}^+ \), the generalized harmonic numbers \(H_n(\alpha) \) are defined by

\[
H_0(\alpha) = 0 \quad \text{and} \quad H_n(\alpha) = \sum_{i=1}^{n} \frac{1}{i^\alpha} \quad \text{for } n \geq 1.
\]

For \(\alpha = 1 \), \(H_n(1) = H_n \) are the usual harmonic numbers and the generating function of the generalized harmonic numbers is

\[
\sum_{n=1}^{\infty} H_n(\alpha)x^n = -\frac{\ln \left(1 - \frac{x}{\alpha}\right)}{1 - x}.
\]

In [15], for the generalized harmonic numbers \(H_n(\alpha) \), the authors defined the generalized hyperharmonic numbers of order \(r, H_n^r(\alpha) \) as follows:

Definition 1. For \(r < 0 \) or \(n \leq 0 \), \(H_n^r(\alpha) = 0 \) and for \(n \geq 1 \), the generalized hyperharmonic numbers of order \(r, H_n^r(\alpha) \), are defined by

\[
H_n^r(\alpha) = \sum_{i=1}^{n} H_{i-1}^r(\alpha), \quad r \geq 1,
\]

where \(H_0^r(\alpha) = \frac{1}{n^\alpha} \).

For \(\alpha = 1 \), \(H_n^r(1) = H_n^r \) are the hyperharmonic numbers of order \(r \). The generating function of the generalized hyperharmonic numbers of order \(r \) is

\[
\sum_{n=1}^{\infty} H_n^r(\alpha)x^n = -\frac{\ln \left(1 - \frac{x}{\alpha}\right)}{(1 - x)^r}.
\]

In [4, 18], the generalized harmonic numbers \(H(n, r) \) of rank \(r \) are defined as for \(n \geq 1 \) and \(r \geq 0 \),

\[
H(n, r) = \sum_{1 \leq n_0 + n_1 + \cdots + n_r \leq n} \frac{1}{n_0n_1\cdots n_r}.
\]

It is clear that \(H(n, 0) = H_n \). The generating function of the generalized harmonic numbers \(H(n, r) \) of rank \(r \) is defined by

\[
\sum_{n=0}^{\infty} H(n, r)x^n = \frac{(-\ln (1-x))^{r+1}}{1-x}.
\]

In [8], inspired from works [4, 15, 18], \(H(n, r, \alpha) \) are defined as for \(n \geq 1 \) and \(r \geq 0 \),

\[
H(n, r, \alpha) = \sum_{1 \leq n_0 + n_1 + \cdots + n_r \leq n} \frac{1}{n_0n_1\cdots n_r\alpha^{n_0+n_1+\cdots+n_r}}.
\]
For $\alpha = 1$, $H(n, r, 1) = H(n, r)$. The generating function of the generalized harmonic numbers of rank r, $H(n, r, \alpha)$, is given by
\[
\sum_{n=0}^{\infty} H(n, r, \alpha) x^n = \frac{(-\ln(1 - \frac{x}{\alpha}))^{r+1}}{1 - x}.
\]
(2)

The Cauchy numbers of order r, C'_r, are defined by the generating functions to be
\[
\left(\frac{x}{\ln (1 + x)} \right)^r = \sum_{n=0}^{\infty} C'_r x^n n!.
\]
(3)

The Daehee numbers of order r, D'_r, are defined by the generating functions to be
\[
\left(\frac{\ln (1 + x)}{x} \right)^r = \sum_{n=0}^{\infty} D'_r x^n n!.
\]
(4)

For $r = 1$, $D'_1 = D_n$ are Daehee numbers. It is clear that $D_0 = 1$, $D_1 = -\frac{1}{2}$, ..., $D_n = (-1)^n \frac{n!}{n+1}$.

The derangement numbers d_n are defined by the generating functions to be
\[
e^{-x} \frac{1}{1 - x} = \sum_{n=0}^{\infty} d_n x^n n!.
\]
(5)

and $d_n = \sum_{k=0}^{n} (-1)^k \frac{n!}{k!}$ [5].

The generalized geometric series are given by for $a, b \in \mathbb{Z}^+$,
\[
\sum_{n=b}^{\infty} \binom{a + n - b}{n - b} x^n = \frac{x^b}{(1 - x)^{a+1}},
\]
(6)

and the exponential generating function is
\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n.
\]

Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$ and $G(x) = \sum_{n=0}^{\infty} b_n x^n$ be two generating functions. The product of these functions is given as follows:
\[
F(x)G(x) = \left(\sum_{n=0}^{\infty} a_n x^n \right) \left(\sum_{n=0}^{\infty} b_n x^n \right) = \sum_{n=0}^{\infty} c_n x^n,
\]
(7)

where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$.

Recently, there are many studies including generalized harmonic and special numbers which are obtained by generating functions [6–8, 10–14, 20].

In [17], Rim et al. investigated some identities with hyperharmonic, Daehee and derangement numbers. For example, for any positive integer n,
\[
\sum_{i=0}^{n} H_i \frac{(-1)^n}{(n-i)!} \frac{d_{n-i}}{(n-i)!} = \sum_{i=0}^{n} H_i^{r-1} \frac{d_{n-i}}{(n-i)!}.
\]
In [8], Duran et al. obtained sums including generalized harmonic numbers and special numbers. For example, for any positive integers \(n, r \) and \(m \),

\[
H(n, r, \alpha) = \sum_{i=0}^{n} \sum_{j=0}^{i} (-1)^{n-j-r} \binom{m-1}{n-i} H^m_j(\alpha) s(i-j, r) r!
\]

where the Stirling numbers of the first kind \(s(n, i) \) are given by

\[
x^n = \sum_{i=0}^{n} s(n, i)x^i,
\]

where for \(n \geq 0 \), \(s(n, 0) = \delta_{n0} \), \(\delta_{ni} \) is the Kronecker delta [3, 19]. \(x^n \) stands for the falling factorial defined by

\[
x^n = x (x-1) \ldots (x-n+1).
\]

In [11], Kim et al. gave some new identities involving harmonic and hyperharmonic numbers which are derived from the transfer formula for the associated sequences. For example, for \(n, r \geq 1 \) and \(1 \leq k \leq n \),

\[
\begin{align*}
\left(\frac{(r+3)}{n-k-1} \right) \left(n-k \right) \left(n-1 \right)^{n-k} \\
= \sum_{a=k}^{n} \sum_{l=0}^{n-a} \sum_{i=0}^{n} \left(\sum_{j_l+1}^{j_n+1} \cdots \sum_{m_n=1}^{m_1} \right) \left(m_1 \cdots m_n H_{r_{m_1}} \cdots H_{r_{m_n}} \right) l! r^l \\
\times \binom{n+l-1}{r+1} \binom{n-1}{a-1} s(n-a, l)(a-1)^{a-k}.
\end{align*}
\]

2 Sums with the generalized harmonic numbers of rank \(r \) and special numbers

This section, we will give some sums involving these numbers, using the generating functions of the generalized harmonic numbers of rank \(r \) and special numbers.

Theorem 2.1. Let \(n \) be a positive integer. For \(r \geq 1 \),

\[
\sum_{i=0}^{n} H(i, r-1, \alpha) H_{n-i}^r(\alpha) = \sum_{l_1+l_2+\cdots+l_{r+1}=n} H_{n}^1(\alpha) H_{n}^2(\alpha) \cdots H_{n}^{r+1}(\alpha) = \sum_{i=0}^{n} (-1)^i \binom{n-i-1}{r} D_{i+1}^{r+1} \alpha^{i+r+1}.
\]

Proof. By (1) and (2), we consider that

\[
\frac{-\ln \left(1 - \frac{x}{\alpha} \right)}{1-x}, \frac{-\ln \left(1 - \frac{x}{\alpha} \right)}{(1-x)^r} = \left(\sum_{n=0}^{\infty} H(n, r-1, \alpha) x^n \right) \left(\sum_{n=0}^{\infty} H_r^r(\alpha) x^n \right),
\]

and using (7), equals

\[
\sum_{n=0}^{\infty} \sum_{i=0}^{n} H(i, r-1, \alpha) H_{n-i}^r(\alpha) x^n,
\]
and
\[
\frac{(-\ln \left(1 - \frac{x}{\alpha}\right))^{r+1}}{(1-x)^{r+1}} = \left(\frac{-\ln \left(1 - \frac{x}{\alpha}\right)}{1-x}\right) \times \left(\frac{-\ln \left(1 - \frac{x}{\alpha}\right)}{1-x}\right) \times \ldots \times \left(\frac{-\ln \left(1 - \frac{x}{\alpha}\right)}{1-x}\right)
\]
\[
= \left(\sum_{l_1=0}^{\infty} H_{l_1}(\alpha)x^{l_1}\right) \left(\sum_{l_2=0}^{\infty} H_{l_2}(\alpha)x^{l_2}\right) \ldots \left(\sum_{l_{r+1}=0}^{\infty} H_{l_{r+1}}(\alpha)x^{l_{r+1}}\right)
\]
\[
= \sum_{n=0}^{\infty} \sum_{l_1+l_2+\ldots+l_{r+1}=n} H_{l_1}(\alpha)H_{l_2}(\alpha) \cdots H_{l_{r+1}}(\alpha)x^n.
\] (9)

Also, from (4) and (6), we have
\[
\frac{(-\ln \left(1 - \frac{x}{\alpha}\right))^{r+1}}{(1-x)^{r+1}} = \frac{\ln \left(1 - \frac{x}{\alpha}\right)}{-x} \frac{x^{r+1}}{(1-x)^{r+1}}
\]
\[
= \frac{1}{\alpha^{r+1}} \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!\alpha^n} \sum_{n=r}^{\infty} \frac{n}{r} x^{n-1}
\]
\[
= \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!\alpha^{n+r+1}} \sum_{n=r+1}^{\infty} \frac{n}{r} x^{n}
\]
\[
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} (-1)^i \left(\frac{n-i}{r}\right) \frac{x^{n-i}}{\alpha^{i+r+1}}
\] (10)

Hence from (8), (9) and (10), the desired results are obtained.

Theorem 2.2. Let \(n\) and \(r\) be positive integers. For \(m \geq 2\),

\[
\sum_{i=0}^{n} H(i, m-2, \alpha) H_{n-i}^{m-1}(\alpha) = \sum_{l_1+l_2+\ldots+l_m=n} H_{l_1}(\alpha)H_{l_2}(\alpha) \cdots H_{l_m}(\alpha),
\]

and

\[
\sum_{i=0}^{n} H(i, rm-2, \alpha) H_{n-i}^{m-1}(\alpha) = \sum_{l_1+l_2+\ldots+l_m=n} H(l_1, r-1, \alpha)H(l_2, r-1, \alpha) \cdots H(l_m, r-1, \alpha).
\]

Proof. The proof is similar to the proof of Theorem 2.1.

Theorem 2.3. Let \(n\) be a positive integer. For \(r \geq 1\),

\[
\sum_{i=0}^{n} (-1)^i \frac{C_i}{\alpha^{i-1}i!} H(n-i+1, r+1, \alpha) = H(n, r, \alpha).
\]

Proof. From (2) and (3), we write

\[
\sum_{n=0}^{\infty} H(n, r, \alpha)x^n = \frac{(-\ln \left(1 - \frac{x}{\alpha}\right))^{r+2}}{(1-x)^{r+2}} \frac{-x/\alpha}{\ln \left(1 - \frac{x}{\alpha}\right)} x^n
\]
\[
= \sum_{n=0}^{\infty} H(n, r+1, \alpha)x^n \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{\alpha^{n-1}n!}
\]
\[
= \sum_{n=0}^{\infty} H(n+1, r+1, \alpha)x^n \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{\alpha^{n-1}n!},
\]

96
and by (7)
\[\sum_{n=0}^{\infty} H(n, r, \alpha) x^n = \sum_{n=0}^{\infty} \sum_{i=0}^{n} (-1)^i \frac{C_i}{\alpha^i i!} H(n - i + 1, r + 1, \alpha) x^n \]
as claimed. So, the proof is complete.

Theorem 2.4. Let \(n \) be a positive integer. For \(r \geq 1 \),
\[\sum_{j=0}^{n} \sum_{i=0}^{j} H(i, r - 1, \alpha) H_{j-i}(\alpha) \frac{(-1)^{n-j}}{(n-j)!} = \sum_{i=0}^{n} H(i, r, \alpha) \frac{d_{n-i}}{(n-i)!} \]
and
\[\sum_{i=0}^{n} \frac{(-1)^i d_{n-i-r-1} D_{i+1}^{r+1}}{\alpha^{i+r+1} i! (n-i-r-1)!} = \sum_{i=0}^{n} H(i, r, \alpha) \frac{(-1)^{n-i}}{(n-i)!} \]

Proof. By (7), we observe that
\[\left(-\ln \left(1 - \frac{x}{\alpha} \right) \right)^{r+1} e^{-x} = \sum_{n=0}^{\infty} H(n, r, \alpha) x^n \sum_{n=0}^{\infty} \frac{d_n}{n!} x^n \]
\[= \sum_{n=0}^{\infty} \sum_{i=0}^{n} H(i, r, \alpha) \frac{d_{n-i}}{(n-i)!} x^n \] (11)
and
\[\left(-\ln \left(1 - \frac{x}{\alpha} \right) \right)^{r+1} e^{-x} = \left(-\ln \left(1 - \frac{z}{\alpha} \right) \right) - \frac{\ln\left(1 - \frac{x}{\alpha} \right)}{1-x} e^{-x} \]
\[= \sum_{n=0}^{\infty} H(n, r - 1, \alpha) x^n \sum_{n=0}^{\infty} H_n(\alpha) x^n \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \]
\[= \sum_{n=0}^{\infty} \sum_{i=0}^{n} H(i, r - 1, \alpha) H_{n-i}(\alpha) x^n \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \]
\[= \sum_{n=0}^{\infty} \sum_{j=0}^{n} \sum_{i=0}^{j} H(i, r - 1, \alpha) H_{j-i}(\alpha) \frac{(-1)^{n-j}}{(n-j)!} x^n. \] (12)

From here, (11) and (12) yield the desired result.

From (7), we write
\[\left(-\ln \left(1 - \frac{z}{\alpha} \right) \right)^{r+1} e^{-x} = \sum_{n=0}^{\infty} H(n, r, \alpha) x^n \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \]
\[= \sum_{n=0}^{\infty} \sum_{i=0}^{n} H(i, r, \alpha) \frac{(-1)^{n-i}}{(n-i)!} x^n, \] (13)
and, by (4) and (5),

\[
\frac{\left(-\ln\left(1 - \frac{x}{\alpha} \right) \right)^{r+1}}{1 - x} e^{-x} = \left(\frac{\ln(1 - x/\alpha)}{-x} \right)^{r+1} \frac{e^{-x}}{1 - x} x^{r+1}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \frac{D_{n+r+1}^1}{\alpha^{n+r+1} n!} x^n \sum_{m=0}^{\infty} \frac{d_n}{n!} x^{n+r+1}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \frac{D_{n+r+1}^1}{\alpha^{n+r+1} n!} x^n \sum_{n=0}^{\infty} \frac{d_{n-r-1}}{(n-r-1)!} x^n
\]

\[
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{(-1)^i d_{n-i-r-1}}{\alpha^{i+r+1} i!} \frac{D_{i}^{r+1}}{(n-i-r-1)!} x^n.
\]

(14)

With the help of (13) and (14), we have a relation between the generalized harmonic numbers of rank \(r \), \(H(n,r,\alpha) \), and Daehee numbers of order \(r \).

\(\square \)

Acknowledgements

We would like to thank the referees for the helpful comments and motivations.

References

