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Abstract: We enumerate partitions of the set {1, . . . , n} according to occurrences of isolated
successions, that is, integer strings a, a + 1, . . . , b in a block when neither a − 1 nor b + 1 lies
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1 Introduction

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into nonempty subsets called blocks.
A partition into k-blocks is also called a k-partition and denoted by B1/B2/ . . . /Bk, where the
blocks are arranged in standard order: min(B1) < · · · < min(Bk) (see [4]).

The number of k-partitions of [n] is the Stirling number of the second kind S(n, k) which
satisfies the recurrence relation:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k), (1)

where S(0, 0) = 1, S(n, 0) = S(0, n) = 0 for n > 0.
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The classical associated Stirling number of the second kind S2(n, k) enumerates k-partitions
of [n] into non-singleton blocks (see [2, 8]). A further refinement of S(n, k) is the t-associated
Stirling number of the second kind St(n, k) which is the number of k-partitions of [n] into blocks
of size ≥ t. In particular S1(n, k) = S(n, k). These numbers are defined by the triangular
recurrence relation

St(n, k) = k St(n− 1, k) +

(
n− 1

t− 1

)
St(n− t, k − 1). (2)

Inspired by these results, Munagi [7] recently studied the enumeration of partitions with
respect to occurrences of ‘isolated singletons’, where an isolated singleton refers to an element a
in a block Bi such that a− 1, a + 1 /∈ Bi. For example, the partition 1, 2, 4, 6/3/5, 7, 8 contains
four isolated singletons, namely 4, 6, 3, 5. The number g0(n, k) of k-partitions of [n] containing
no isolated singletons is given by [7, Theorem 2]:

g0(n, k) =
∑
j≥1

(
n− j − 1

j − 1

)
S(j − 1, k − 1). (3)

In this paper we generalize the singletons case and consider the enumeration of partitions of [n]
by strings of consecutive integers. A maximal string of t > 0 consecutive integers will also be
called a succession of length t or a t-succession.

Notation. Let [a, b] denote {a, a + 1, . . . , b} ⊆ [n] and let [b] denote [1, b]. So [a, b] represents a
succession of length b− a+ 1.

Definition. Let B1/B2/ · · · /Bk be a partition of [n] and let [a, a + t − 1] ⊆ Bi, 1 ≤ i ≤ k.
Then we say that [a, a + t − 1] is an isolated succession of length t (or an isolated t-succession)
if |Bi| = t or a− 1 /∈ Bi and a+ t /∈ Bi.

For example, the partition 1, 3, 4, 6, 7, 8/2, 5/9, 10/11 contains two isolated 2-successions,
namely [3, 4] and [9, 10]. The partition 1, 3, 6, 7, 8/2, 5/4, 9, 11/10 contains none.

A related subsisting idea in the literature is concerned with the enumeration of partitions
according to the number of occurrences of general unrestricted successions (see [5] and [6]). Here
the partition 1, 3, 4, 6, 7, 8/2, 5/9, 10/11 is deemed to contain four unrestricted 2-successions,
namely [3, 4], [6, 7], [7, 8] and [9, 10]. The notion of enumeration of partitions according to the
number of isolated successions of length > 1 appears to be new.

In this paper we obtain enumeration results for the number of partitions of [n] according to
the number of occurrences of isolated t-successions for any positive integer t ≤ n.

Let gr(n, k, t) denote the number of k-partitions of [n] containing r isolated t-successions,
and let g0(n, k, t) = g(n, k, t).

In Section 2 we first consider the isolated succession analog of the t-associated Stirling
numbers of the second. Then in Section 3 we obtain a recursive formula and an explicit formula
for the function g(n, k, t). These results will lead to the derivation of corresponding formulas for
gr(n, k, t) in Section 4.
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2 Isolated Stirling numbers

Define qt(n, k) to be the number of k-partitions of [n] containing only isolated successions of
length ≥ t. The numbers qt(n, k) satisfy the recurrence:

Proposition 2.1. Given integers n, k, t with 1 < k < n, 1 < t < n, we have

qt(n, k) = qt(n− 1, k) + qt(n− t, k − 1) + (k − 1)qt(n− t, k)
qt(0, 0) = 1, qt(n, 1) = 1, qt(n, n) = δ1t, qn(n, k) = δ1k, q1(n, k) = S(n, k), (4)

where δij is the Kronecker delta (δii = 1, δij = 0, i 6= j).

Proof. We construct an enumerated partition p = B1/ · · · /Bk by considering the length of the
maximal string of consecutive integers containing n.

The number of partitions p in which n belongs to a succession of length≥ t+1 is qt(n−1, k)

(obtained by putting n into the block containing n− 1).
The number of partitions p containing the block [n− t+1, n] is qt(n− t, k− 1) (obtained by

inserting [n− t+ 1, n] into a partition enumerated by qt(n− t, k − 1)).
The number of partitions p in which [n − t + 1, n] ( Bi and n − t /∈ Bi, i ∈ [k] is

(k − 1)qt(n − t, k) (obtained by putting the elements n − t + 1, . . . , n into any block except
the block containing n− t in a partition enumerated by qt(n− t, k)).

Addition of the three classes of partitions gives the main result. The initial values are evident
and may be verified separately.

Remark 1. Observe that q2(n, k) = g0(n, k), where the explicit formula is stated in (3).

We next obtain exact computational formulas for qt(n, k).
Define Qt(x; k) =

∑
n≥k qt(n, k)x

n. Then by Proposition 2.1, we have, for t ≥ 2,

Qt(x; k) = xQt(x; k) + xtQt(x; k − 1) + xt(k − 1)Qt(x; k),

which leads to

Qt(x; k) =
xt

1− x− (k − 1)xt
Qt(x; k − 1).

Note that Qt(x; 1) = xt/(1− x). Thus, by induction on k, we have

Qt(x; k) =
xkt

(1− x)
∏k

j=2(1− x− (j − 1)xt)
.

Hence, using the fact that xk∏k
j=1(1−jx)

=
∑

n≥k S(n, k)x
n, we obtain

Qt(x; k) =
xkt

(1− x)k
∏k−1

j=1

(
1− j xt

1−x

)
= xt

∑
n≥k

S(n, k − 1)
xnt

(1− x)n+1

=
∑
i≥k

∑
j≥0

(
i+ j

j

)
S(n, k − 1)xit+t+j.

Hence we have proved the following result.
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Proposition 2.2. The generating function and the exact formula for the t-isolated Stirling number
qt(n, k) are given by ∑

n≥0

qt(n, k)x
n =

xkt

(1− x)
∏k−1

j=1(1− x− jxt)
, t ≥ 2

and

qt(n, k) =
∑
i≥k−1

(
n+ i− (i+ 1)t

i

)
S(i, k − 1). (5)

Some values of qt(n, k) are illustrated for t = 2, 3 in Table 1. Note that in order to have
qt(n, k) > 0 it is necessary that 1 ≤ k ≤ bn

t
c. When k is maximal, then n = kt + r, 0 ≤ r < t,

and Equation (5) reduces to

qt(n, k) =

(
k + r − 1

r

)
, n = kt+ r, 0 ≤ r < t.

q2(n, k) = g(n, k, 1)

n\k 1 2 3 4 5 q2(n)

2 1 0 0 0 0 1

3 1 0 0 0 0 1

4 1 1 0 0 0 2

5 1 2 0 0 0 3

6 1 4 1 0 0 6

7 1 7 3 0 0 11

8 1 12 9 1 0 23

9 1 20 22 4 0 47

10 1 33 52 16 1 103

11 1 54 116 50 5 226

q3(n, k)

n\k 1 2 3 4 q3(n)

3 1 0 0 0 1

4 1 0 0 0 1

5 1 3 0 0 1

6 1 1 0 0 2

7 1 2 0 0 3

8 1 3 0 0 4

9 1 5 1 0 7

10 1 8 3 0 12

11 1 12 6 0 19

12 1 18 13 1 33

Table 1. Tables of qt(n, k), qt(n) =
∑

k qt(n, k) for t = 2, 3

3 Partitions avoiding isolated t-successions

The number g(n, k, t) of k-partitions of [n] containing no isolated t-successions satisfies the
following recurrence.

Theorem 3.1. Given integers n, k, t with 0 < k < n, 0 < t < n, we have

g(n, k, t) = g(n− 1, k − 1, t) + kg(n− 1, k, t)− g(n− t, k − 1, t)− (k − 1)g(n− t, k, t)

+g(n− t− 1, k − 1, t) + (k − 1)g(n− t− 1, k, t). (6)

Alternatively, we have

g(n, k, t) =
∑
i≥1

(g(n−i, k−1, t)+(k−1)g(n−i, k, t))−g(n−t, k−1, t)−(k−1)g(n−t, k, t). (7)

g(0, 0, t) = 1, g(n, 1, t) = 1− δnt, g(n, n, t) = 1− δ1t, g(n, k, n) = S(n, k)(1− δ1k).
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Proof. For each j ∈ [t− 1], if [n− j+1, n] = Bi, i ∈ [k], we obtain g(n− j, k− 1, t) partitions.
We construct an enumerated partition p = B1/ · · · /Bk in three ways, as follows.
If [n− j +1, n] = Bi, i ∈ [k] for each j ∈ [t− 1], we obtain g(n− j, k− 1, t) partitions. But

when [n− j + 1, n] ( Bi and n− j /∈ Bi, we obtain (k − 1)gt(n− j, k, t) partitions.
So the total number of partitions in which n belongs to an isolated succession of length < t is

t−1∑
i=1

(g(n− i, k − 1, t) + (k − 1)g(n− i, k, t)). (8)

To obtain a partition in which n belongs to an isolated succession of length≥ t+2, we put n into
the block containing n− 1 in a partition enumerated by g(n− 1, k, t) provided that n− 1 belongs
to an isolated succession of length ≥ t+ 1. So the number of partitions in which n belongs to an
isolated succession of length ≥ t+ 2 is (using (8) with n− 1 in place of n):

g(n− 1, k, t)−
t−1∑
i=1

(g((n− 1)− i, k − 1, t) + (k − 1)g((n− 1)− i, k, t)). (9)

It remains to account for partitions in which n belongs to an isolated succession of length t + 1.
Their number is clearly

g(n− t− 1, k − 1, t) + (k − 1)g(n− t− 1, k, t). (10)

Adding Equations (8) to (10) we obtain

g(n, k, t) =
t−1∑
i=1

(g(n− i, k − 1, t) + (k − 1)g(n− i, k, t))

+ g(n− 1, k, t)−
t−1∑
i=1

(g(n− i− 1, k − 1, t) + (k − 1)g(n− i− 1, k, t))

+ g(n− t− 1, k − 1, t) + (k − 1)g(n− t− 1, k, t). (11)

Then, on shifting limits in the second summation and canceling terms between the two
summations, we obtain the recurrence (6):

g(n, k, t) = g(n− 1, k − 1, t) + (k − 1)g(n− 1, k, t)

+ g(n− 1, k, t)− g(n− t, k − 1, t)− (k − 1)g(n− t, k, t)
+ g(n− t− 1, k − 1, t) + (k − 1)g(n− t− 1, k, t). (12)

A different approach is obtained by noting that the number of partitions in which n belongs to an
isolated succession of length ≥ t+ 1 is given directly by

n−k+1∑
i=t+1

(g(n− i, k − 1, t) + (k − 1)g(n− i, k, t)). (13)

Thus addition of Equations (8) and (13) gives the second recurrence (7).
The initial values are intuitive. For example, the trivial 1-block partition [n] implies that

gn(n, 1) = 0 and gt(n, 1) = 1 when t 6= n, but if k > 1, then gn(n, k) = S(n, k) since no block
can contain an n-succession.
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The solution of the recurrence (6) or (7) is given by the following explicit formula.

Theorem 3.2. We have

g(n, k, t) =
∑
j≥k

∑
i≥0

(−1)i
(
j

i

)(
n− 1− it
j − 1− i

)
S(j − 1, k − 1).

In order to prove this theorem we first obtain a result on the number of integer compositions
of n into k summands without t, to be denoted by wt(n, k). (A recurrence relation for wt(n, k) is
derived in [1]). The generating function is

wt(x; k) =
∑
n≥0

wt(n, k)x
n = ((x+ x2 + x3 + · · · )− xt) =

(
x

1− x
− xt

)k

which leads to

wt(x; k) =
k∑

j=0

(−1)j
(
k

j

)
xk−j+jt

(1− x)k−j

=
k∑

j=0

∑
i≥0

(−1)j
(
k

j

)(
k − 1− j + i

k − 1− j

)
xk−j+jt+i.

Hence,

wt(n, k) =
k∑

j=0

(−1)j
(
k

j

)(
n− 1− jt
k − 1− j

)
,

where we define
(

n
−1

)
= δ−1,n.

Thus, we can state the following result.

Lemma 3.3. We have

wt(n, k) =
k∑

j=0

(−1)j
(
k

j

)(
n− 1− jt
k − 1− j

)
. (14)

Proof of Theorem 3.2. The function g(n, k, t) enumerates k-partitions of [n] in which every block
consists of distinct successions of lengths 6= t. Any pair of successive distinct successions,
a, a+ 1, . . . , a+ u− 1 and b, b+ 1, . . . , b+ v − 1 in a block, satisfy 0 < u, v 6= t and a+ u < b.
A partition with this property may be constructed in two steps. First obtain a j-partition of
[n], say {H1, . . . , Hj}, in which every block consists of one isolated succession of length 6= t,
where j ≥ k. To obtain such partitions simply divide the sequence 1, 2, . . . , n into j segments
by inserting j − 1 separators between the terms such that no segment has length t. Second,
obtain a partition of {H1, . . . , Hj} (regarded as just a set of j distinct objects) into k blocks of
nonconsecutive label numbers, {B1, . . . , Bk}, that is, if Hq, Hs ∈ Bi, then |q − s| > 1. Last, a
desired partition P = {S1, . . . , Sk} is obtained by setting Si =

⋃
H∈Bi

B, 1 ≤ i ≤ k.
The construction of a partition in the first step corresponds to the process of putting j − 1

stars between n bars on a line such that each bar separates m stars, m 6= t. This procedure is
known to generate the compositions of n into j summands different from t (see [3]). For example,
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with t = 2, the segments 123/4/5678/9 correspond to ∗ ∗ ∗ | ∗ | ∗ ∗ ∗ ∗ | ∗ which identifies the
composition 3+1+4+1. The corresponding number of partitions is the number of compositions
of n into j summands without t, that is, wt(n, j). It is clear that the subsequent construction in
the second step generates as many partitions as the number of k-partitions of [j] into blocks of
nonconsecutive elements. This number is known to be S(j−1, k−1) (see [4]). Thus for each j the
number of partitions P is wt(n, j)S(j− 1, k− 1). Hence g(n, k, t) =

∑
j wt(n, j)S(j− 1, k− 1)

which proves the theorem in view of (14).

Remark 2. Since g(n, k, 1) = g0(n, k), one may use Theorem 3.2 and Equation (3) to obtain the
following identity which is reminiscent of other identities in Shattuck’s collection [9]:

n−1∑
m=k

m−1∑
i=0

(−1)i
(
m

i

)(
n− 1− i
n−m

)
S(m−1, k−1) =

∑
j≥1

(
n− j − 1

j − 1

)
S(j−1, k−1), n > k > 1.

Corollary 3.3.1. The number of partitions of [n] that contain no isolated t-successions is given
by f(n, t) =

∑
k g(n, k, t):

f(n, t) =
∑
j≥k

j∑
i≥0

(−1)i
(
j

i

)(
n− 1− it
j − 1− i

)
B(j − 1),

where B(n) denotes the n-th Bell number, defined by B(n) =
∑

k S(n, k).

4 Partitions containing isolated t-successions

We now consider the general enumeration of k-partitions of [n] containing r ≥ 0 isolated
t-successions.

Theorem 4.1. Given positive integers n, k, t, r with 1 < k < n, 0 < rt < n, 1 < r, we have
either of the following relations:

gr(n, k, t) = gr(n− 1, k − 1, t) + kgr(n− 1, k, t)

− gr(n− t, k − 1, t)− (k − 1)gr(n− t, k, t)
− gr−1(n− t− 1, k − 1, t)− (k − 1)gr−1(n− t− 1, k, t)

+ gr(n− t− 1, k − 1, t) + (k − 1)gr(n− t− 1, k, t)

+ gr−1(n− t, k − 1, t) + (k − 1)gr−1(n− t, k, t), (15)

gr(n, k, t) =
∑
j≥1

(gr(n− j, k − 1, t) + (k − 1)gr(n− j, k, t)) + gr−1(n− t, k − 1, t)

+(k − 1)gr−1(n− t, k, t)− gr(n− t, k − 1, t)− (k − 1)gr(n− t, k, t). (16)

gt(0, 0, t) = δ0r, g0(n, k, t) = g(n, k, t), gr(rt, k, t) = S(r − 1, k − 1), gr(n, 1, t) = δntδr1,

gr(n, n, t) = δnrδ1t, gr(t+ 1, 1, t) = δ0r, gr(t+ 1, 2, t) = δ1tδ2r + 2(1− δ1t)δ1r.
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Proof. LetGr(n, k, t) denote the set of partitions enumerated by gr(n, k, t). The proof is obtained
in each case by constructing a partition P = B1/ · · · /Bk ∈ Gr(n, k, t).

Proof of (15). (i) The number of partitions in P containing the isolated succession [n− j + 1, n],

j ∈ [t− 1] is
t−1∑
j=1

(gr(n− j, k − 1, t) + (k − 1)gr(n− j, k, t)). (17)

(ii) The number of partitions in Gr(n − 1, k, t) that do not contain the isolated successions
[(n − 1) − j + 1, (n − 1)], j ∈ [t], i.e., partitions in which n − 1 belongs to a succession of
length ≥ t+ 1, is

gr(n− 1, k, t)−
t−1∑
j=1

(gr(n− 1− j, k − 1, t) + (k − 1)gr(n− 1− j, k, t))

− (gr−1(n− t− 1, k − 1, t) + (k − 1)gr−1(n− t− 1, k, t)). (18)

So we put n into the block containing n − 1 to obtain a partition P containing [n − ` + 1, n],

` ≥ t+ 2.
(iii) The number of partitions in P containing the isolated succession [n− t, n] is

gr(n− t− 1, k − 1, t) + (k − 1)gr(n− t− 1, k, t). (19)

(iv) Lastly, the number of partitions in P containing the t-succession [n− t+ 1, n] is

gr−1(n− t, k − 1, t) + (k − 1)gr−1(n− t, k, t). (20)

Addition of the expressions in (17) to (20) gives

gr(n, k, t) =
t−1∑
j=1

(gr(n− j, k − 1, t) + (k − 1)gr(n− j, k, t))

+ gr(n− 1, k, t)−
t−1∑
j=1

(gr(n− 1− j, k − 1, t) + (k − 1)gr(n− 1− j, k, t))

− (gr−1(n− t− 1, k − 1, t) + (k − 1)gr−1(n− t− 1, k, t))

+ gr(n− t− 1, k − 1, t) + (k − 1)gr(n− t− 1, k, t)

+ gr−1(n− t, k − 1, t) + (k − 1)gr−1(n− t, k, t), (21)

which simplifies to the first recurrence (15).

Proof of (16). The summation accounts for the number of partitions P in which n belongs to
an isolated succession of length j 6= t provided that the t-th summand is excluded, that is, the
subtracted quantity gr(n − t, k − 1, t) + (k − 1)gr(n − t, k, t). When added to the number of
partitions in which n belongs to an isolated t-succession, given by (20), we obtain (16).

The initial values may be verified independently except possibly the following two. First,
gr(rt, k, t) = S(r − 1, k − 1) because the r > 1 instances of t-successions, namely, (1, . . . , t),
(t + 1, . . . , 2t), . . . , (t(r − 1) + 1, . . . , rt), appear in valid partitions of [rt] provided that each
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pair in a block are isolated or non-consecutive. So the number of cases is equal to the number
of partitions of [r] into blocks of non-consecutive integers, that is S(r − 1, t − 1). Second,
gr(t + 1, 2, t) = 1 or 2. Indeed g1(t + 1, 2, t) = 2 because of the partitions 1/2, . . . , t + 1 and
1, . . . , t/t+ 1, while g2(t+ 1, 2, t) = 1 provided that t = 1 giving the trivial partition 1/2. Other
values of t, r give gr(t + 1, 2, t) = 0. Combining the three cases we obtain gr(t + 1, 2, t) =

δ1tδ2r + 2(1− δ1t)δ1r.

In order to obtain an explicit formula for gr(n, k, t), we need the formula for the number of
compositions of n into j summands that contain r occurrences of t. Any such composition may
be obtained by designating r of the j positions to hold t’s, in

(
j
r

)
ways; and then obtaining a

composition of n − rt without t’s into the other j − r positions, in wt(n − rt, j − r) ways. The
number of compositions generated is

(
j
r

)
wt(n− rt, j − r).

Therefore, using a reasoning similar to the proof of Theorem 3.2 we obtain the solution of
(15) and (16) in the form

gr(n, k, t) =
∑
j≥1

(
j

r

)
wt(n− rt, j − r)S(j − 1, k − 1), n > rt. (22)

Then applying Equation (14), the next theorem follows.

Theorem 4.2. We have

gr(n, k, t) =
∑
j≥1

(
j

r

) j−r∑
i=0

(−1)i
(
j − r
i

)(
n− rt− 1− it
j − r − 1− i

)
S(j − 1, k − 1), n > rt,

where gr(rt, k, t) = S(r − 1, t− 1).

For example, the 2-partitions of [5] are distributed according to containment of isolated
2-successions as follows:

g0(5, 2, 2) = 6 : 1, 2, 3, 4/5; 1, 2, 3, 5/4; 1, 3, 4, 5/2; 1, 3, 5/2, 4; 1, 5/2, 3, 4; 1/2, 3, 4, 5.

g1(5, 2, 2) = 6 : 1, 2, 3/4, 5; 1, 2, 4/3, 5; 1, 3, 4/2, 5; 1, 4/2, 3, 5; 1, 2/3, 4, 5; 1, 3/2, 4, 5.

g2(5, 2, 2) = 3 : 1, 2, 4, 5/3; 1, 4, 5/2, 3; 1, 2, 5/3, 4.

gt(5, 2, 2) = 0, t > 2.

The values of gr(n, k, t) are illustrated in Table 2 with t = 2 and r = 1 for 1 ≤ n ≤ 10.

Corollary 4.2.1. The number of k-partitions of [n] containing r isolated t-successions is given
by fr(n, t) =

∑
k gr(n, k, t):

fr(n, t) =
∑
j≥1

(
j

r

) j−r∑
i=0

(−1)i
(
j − r
i

)(
n− rt− 1− it
j − r − 1− i

)
B(j − 1), n > rt,

where fr(rt, t) = B(r − 1).

89



g1(n, k, 2)

n\k 1 2 3 4 5 6 7 8 9 f1(n, t)

2 1 0 0 0 0 0 0 0 0 1

3 0 2 0 0 0 0 0 0 0 2

4 0 3 3 0 0 0 0 0 0 6

5 0 6 12 4 0 0 0 0 0 22

6 0 13 41 30 5 0 0 0 0 89

7 0 26 132 162 60 6 0 0 0 386

8 0 50 402 762 475 105 7 0 0 1801

9 0 96 1178 3302 3120 1150 168 8 0 9022

10 0 184 3368 13560 18389 10110 2436 252 9 48308

Table 2. Values of gr(n, k, t), fr(n, t) =
∑

k gr(n, k, t) for t = 2, r = 1.

4.1 Generating functions

In this section we obtain generating functions for g(n, k, t) and gr(n, k, t).
LetG(x; k, t) =

∑
n≥k g(n, k, t)x

n. Since g(n, k, t) =
∑

j≥1wt(n, j)S(j−1, k−1), we have

G(x; k, t) =
∑
j≥k

wt(x; j)S(j − 1; k − 1) =
∑
j≥k

(
x

1− x
− xt

)j

S(j − 1; k − 1),

which gives

G(x; k, t) =

(
x

1− x
− xt

) ∑
j≥k−1

(
x

1− x
− xt

)j

S(j; k − 1).

Using the fact that
∑

j≥k S(j, k)x
j =

xk∏k
j=1(1− jx)

, we have

G(x; k, t) =

(
x

1−x − x
t
)k∏k−1

j=1

(
1− j

(
x

1−x − xt
)) .

Let wt(n, k, r) denote the number of compositions of n into k summands which contains r
summands equal to t. Then from the proof of Theorem 4.2 we know that

wt(n, k, r) =

(
k

r

)
wt(n− rt, k − r).

LetGr(x; k, t) =
∑

n≥k gr(n, k, t)x
n be the generating function for gr(n, k, t). Then Equation

(22) implies
Gr(x; k, t) =

∑
j≥k

wt(x; j, r)S(j − 1, k − 1).

On other hand,

wt(x; k, r) =

(
k

r

)
xrt
(

x

1− x
− xt

)k−r

.
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Thus,

Gr(x; k, t) =
xrt(

x
1−x − xt

)r ∑
j≥k

(
j

r

)(
x

1− x
− xt

)j

S(j − 1, k − 1),

which leads to

Gr(x; k, t) =
xrt

r!
(

x
1−x − xt

)r dr

dyr
yk∏k−1

i=1 (1− ix)

∣∣∣∣∣
y=x/(1−x)−xt

.

5 Conclusion

This paper has undertaken a thorough enumeration of set partitions according to distinct strings of
consecutive integers, i.e., successions, lying in a block. We have provided complete formulas—
recursive, generating function and explicit—for the new function qt(n, k) that enumerates the
k-partitions of [n] containing only isolated successions of length ≥ t, in analogy with the
t-associated Stirling numbers of the second kind. We have also considered the generalized
enumeration function gr(n, k, t), r ≥ 0 using the same agenda, and stated the corresponding
results.
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