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Abstract: We enumerate partitions of the set {1,...,n} according to occurrences of isolated
successions, that is, integer strings a,a + 1,...,b in a block when neither a — 1 nor b + 1 lies

in the same block. Our results include explicit formulas and generating functions for the number
of partitions containing isolated successions of a given length. We also consider a corresponding
analog of the associated Stirling numbers of the second kind.
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1 Introduction

A partition of [n] = {1,2,...,n} is a decomposition of [n] into nonempty subsets called blocks.
A partition into k-blocks is also called a k-partition and denoted by B,/By/ ... /By, where the
blocks are arranged in standard order: min(B;) < --- < min(By) (see [4]).

The number of k-partitions of [n] is the Stirling number of the second kind S(n, k) which
satisfies the recurrence relation:

S(n,k)=Sn—-1,k—1)+kS(n—1,k), (1)

where S(0,0) =1, S(n,0) =S5(0,n) =0forn > 0.
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The classical associated Stirling number of the second kind S»(n, k) enumerates k-partitions
of [n] into non-singleton blocks (see [2, 8]). A further refinement of S(n, k) is the t-associated
Stirling number of the second kind S;(n, k) which is the number of k-partitions of [n] into blocks
of size > t¢. In particular S1(n,k) = S(n,k). These numbers are defined by the triangular
recurrence relation

Si(n, k) =k Sy(n—1,k) + (7;:11) Si(n—t, k—1). 2)

Inspired by these results, Munagi [7] recently studied the enumeration of partitions with
respect to occurrences of ‘isolated singletons’, where an isolated singleton refers to an element a
in a block B; such thata — 1, a + 1 ¢ B;. For example, the partition 1,2,4,6/3/5, 7,8 contains
four isolated singletons, namely 4, 6, 3, 5. The number go(n, k) of k-partitions of [n] containing
no isolated singletons is given by [7, Theorem 2]:

OCED 3 U ETR N ®

j>1

In this paper we generalize the singletons case and consider the enumeration of partitions of [n]
by strings of consecutive integers. A maximal string of ¢ > 0 consecutive integers will also be

called a succession of length t or a t-succession.

Notation. Let [a, b] denote {a,a + 1,...,b} C [n] and let [b] denote [1,b]. So [a, b] represents a
succession of length b — a + 1.

Definition. Let B,/Bs/ - /By be a partition of [n] and let [a,a +t — 1] C B;,; 1 < i < k.
Then we say that |a,a + t — 1] is an isolated succession of length t (or an isolated ¢-succession)
if|Bil=tora—1¢ B;anda+t ¢ B;.

For example, the partition 1,3,4,6,7,8/2,5/9,10/11 contains two isolated 2-successions,
namely [3,4] and [9, 10]. The partition 1,3,6,7,8/2,5/4,9,11/10 contains none.

A related subsisting idea in the literature is concerned with the enumeration of partitions
according to the number of occurrences of general unrestricted successions (see [5] and [6]). Here
the partition 1,3,4,6,7,8/2,5/9,10/11 is deemed to contain four unrestricted 2-successions,
namely [3,4], [6,7],[7,8] and [9,10]. The notion of enumeration of partitions according to the
number of isolated successions of length > 1 appears to be new.

In this paper we obtain enumeration results for the number of partitions of [n| according to
the number of occurrences of isolated ¢-successions for any positive integer ¢t < n.

Let g,(n, k,t) denote the number of k-partitions of [n] containing r isolated ¢-successions,
and let go(n, k, t) = g(n, k, t).

In Section 2 we first consider the isolated succession analog of the t-associated Stirling
numbers of the second. Then in Section 3 we obtain a recursive formula and an explicit formula
for the function g(n, k, t). These results will lead to the derivation of corresponding formulas for
gr(n, k,t) in Section 4.
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2 Isolated Stirling numbers

Define ¢;(n, k) to be the number of k-partitions of [n] containing only isolated successions of
length > ¢. The numbers ¢;(n, k) satisfy the recurrence:

Proposition 2.1. Given integers n, k,t with1 < k <n, 1 <t <n, we have
Qt(oao) = 17 Qt<”, 1) = 17 qt(n>n) = 51t7 Qn(na k) = 5114:7 Ch(na k) = S<n> k); (4)
where 0;; is the Kronecker delta (0;; = 1,0;; = 0,¢ # j).

Proof. We construct an enumerated partition p = By /- - /By, by considering the length of the
maximal string of consecutive integers containing 7.

The number of partitions p in which n belongs to a succession of length > ¢+ 1is ¢;(n— 1, k)
(obtained by putting n into the block containing n — 1).

The number of partitions p containing the block [n —t + 1, n] is ¢;(n — ¢, k — 1) (obtained by
inserting [n — ¢t + 1, n] into a partition enumerated by ¢;(n — ¢,k — 1)).

The number of partitions p in which [n — ¢ + 1,n] C B;andn —t ¢ B;, i € [k] is
(k — 1)qi(n — t, k) (obtained by putting the elements n — ¢ + 1,...,n into any block except
the block containing n — ¢ in a partition enumerated by ¢;(n — t, k)).

Addition of the three classes of partitions gives the main result. The initial values are evident

and may be verified separately. [

Remark 1. Observe that go(n, k) = go(n, k), where the explicit formula is stated in (3).

We next obtain exact computational formulas for ¢;(n, k).
Define Q;(x; k) = >, -, @:(n, k)z". Then by Proposition 2.1, we have, for ¢t > 2,

Qi(r;k) = 2Qu(w; k) + 2" Qu(wi kb — 1) + 2 (k — 1)Qu(w; k),

which leads to
.fL't

Qi(x; k) = [ 1>xtQt(x;k —1).

Note that Q;(z;1) = 2'/(1 — z). Thus, by induction on k, we have

xkt

(1 =) [Tl =2 — (j — Dat)

= sk (0, k)", we obtain

Qt(iﬁ; k) =

k
Hence, using the fact that —(—2%——
’ & H?:l(l_jl’)

Qt(% k) =

(1 =) Htll (1 — i)

Hence we have proved the following result.
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Proposition 2.2. The generating function and the exact formula for the t-isolated Stirling number
qi(n, k) are given by
kt

T
kKa™ = t>2
and . »
ank) =" (”“_Z.“H)t)S(i,k—l)- 5)
i>k—1

Some values of ¢;(n, k) are illustrated for ¢ = 2,3 in Table 1. Note that in order to have
q:(n, k) > 0itis necessary that 1 < k < |%]. When k is maximal, then n = kt +r, 0 < r <,
and Equation (5) reduces to

q(n, k) = (k+:_1>, n==kt+r 0<r<t.
@2(n, k) = g(n, k, 1) qs(n, k)
n\k| 1 [ 2] 3[4][5[em] [n\k[1][2][3]4 ¢M®]
2 1 0 0 0 0 1 3 1 0 0 0 1
3 1 0 0 0 0 1 4 1 0 0 0 1
4 1 1 0 0 0 2 5 1 3 0 0 1
5) 1 2 0 0 0 3 6 1 1 0 0 2
6 1 4 1 0 0 6 7 1 2 0 0 3
7 1 7 3 0 0 11 8 1 3 0 0 4
8 1] 12 9 1 0 23 9 1 5) 1 0 7
9 1] 20| 22 4 0 47 10 1 8 3 0 12
10 11 33| 52 16 1 103 11 1] 12 6 0 19
11 1| 54 |116 | 50 5) 226 12 1] 18| 13 1 33

Table 1. Tables of ¢;(n, k), q:(n) = >, q(n, k) fort =2,3

3 Partitions avoiding isolated ¢-successions

The number g(n, k,t) of k-partitions of [n| containing no isolated ¢-successions satisfies the
following recurrence.

Theorem 3.1. Given integers n, k,t with) < k <n, 0 <t < n, we have
gn,k,t) =gn—1,k—1,t) + kgln — 1, k,t) —gn —t,k — 1,t) — (k — 1)g(n — t, k,t)
+gin—t—1,k—-1,t)+ (k—1)g(n —t —1,k,1). (6)
Alternatively, we have

g(n, k,t) = Z(g(n—i, k—1,t)+(k—1)g(n—i, k,t))—g(n—t,k—1,t)—(k—1)g(n—t, k,t). (7)

i>1

g(oa O>t) = 17 g(na 17t) =1- 5nt7 g(nan7t> =1- 61157 g<n7 kvn) - S(na k)(]' - 61k)
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Proof. Foreach j € [t —1],if [n—j+1,n] = B;, i € [k], we obtain g(n — j, k — 1, t) partitions.
We construct an enumerated partition p = B;/ - - - / B, in three ways, as follows.
If [n—j+1,n] =B, i€ [k]foreach j € [t — 1], we obtain g(n — j, k — 1,t) partitions. But
when [n — j+ 1,n| C B;andn — j ¢ B;, we obtain (k — 1)g;(n — j, k, t) partitions.
So the total number of partitions in which n belongs to an isolated succession of length < ¢ is

t—1

D (gn—ik—1,t) + (k= 1)g(n — i, k,1)). (8)

i=1
To obtain a partition in which n belongs to an isolated succession of length > ¢ + 2, we put n into
the block containing n — 1 in a partition enumerated by g(n — 1, k, t) provided that n — 1 belongs
to an isolated succession of length > ¢ + 1. So the number of partitions in which n belongs to an
isolated succession of length > ¢ + 2 is (using (8) with n — 1 in place of n):

t—1

gn—1,kt)— Z(g((n —1) =i, k=1t +(k—1g((n—1)—1i,k,1)). )

i=1
It remains to account for partitions in which n belongs to an isolated succession of length ¢ + 1.
Their number is clearly

gn—t—1k—1,t)+(k—1)g(n —t —1,k,1). (10)

Adding Equations (8) to (10) we obtain

t—1

g(n,k,t) Z (n—i,k—1,t)+ (k—1)g(n —i,k,t))

=1

t—1

+gn—Lkt)=> (gln—i—1,k—11t)+ (k—1)gn—i—1kt))
=1

+gn—t—1,k—1,t)+(k—1)gn—t—1k,t). (11)

Then, on shifting limits in the second summation and canceling terms between the two
summations, we obtain the recurrence (6):

+gn—1,kt) —gn—t,k—1,t) — (k—1)g(n —t, k,t)
+gn—t—1k—-1,t)+(k—1)g(n—t—1,k,1). (12)
A different approach is obtained by noting that the number of partitions in which n belongs to an

isolated succession of length > ¢ + 1 is given directly by

n—k+1

> (gln—ik—1,6) + (k—1)g(n — i, k,1)). (13)

i=t+1
Thus addition of Equations (8) and (13) gives the second recurrence (7).

The initial values are intuitive. For example, the trivial 1-block partition [n] implies that
gn(n,1) = 0and g;(n,1) = 1 when t # n, butif £ > 1, then g,,(n, k) = S(n, k) since no block
can contain an n-succession. [l
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The solution of the recurrence (6) or (7) is given by the following explicit formula.

Theorem 3.2. We have

g(n k) = ZZ(-W(Q (Z:i:?) SG—1,k—1).

>k >0

In order to prove this theorem we first obtain a result on the number of integer compositions
of n into k£ summands without ¢, to be denoted by w,(n, k). (A recurrence relation for wy(n, k) is
derived in [1]). The generating function is

wy (s k) :Zwt(”,k)l"":((x+x2+x3+---)—xt): ( v _ﬂ)k

n>0
which leads to

Ik—]ﬂt

et = 30 () 5

k .
_ (—1) (k’) (k —1-y + Z) ph—iFit
e J k—1-3

Hence,

where we define (")) = 6_1,,.
Thus, we can state the following result.

Lemma 3.3. We have

wy(n, k) = zk:(_w (’;) (7;__11__‘7;) (14)

=0

<.

Proof of Theorem 3.2. The function g(n, k,t) enumerates k-partitions of [n] in which every block
consists of distinct successions of lengths # t. Any pair of successive distinct successions,
a,a+1,...,a+u—1landb,b+1,...,b+v — 1inablock, satisfy 0 < u,v # tand a + u < b.
A partition with this property may be constructed in two steps. First obtain a j-partition of
[n], say {H,,..., H;}, in which every block consists of one isolated succession of length # ¢,
where j > k. To obtain such partitions simply divide the sequence 1,2, ..., n into j segments
by inserting ;7 — 1 separators between the terms such that no segment has length . Second,
obtain a partition of {Hy,..., H;} (regarded as just a set of j distinct objects) into k blocks of
nonconsecutive label numbers, {B, ..., By}, thatis, if H,, H; € B;, then |¢ — s| > 1. Last, a
desired partition P = {Si, ..., Sy} is obtained by setting S; = Uycp B, 1 <i < k.

The construction of a partition in the first step corresponds to the process of putting j — 1
stars between n bars on a line such that each bar separates m stars, m # t. This procedure is
known to generate the compositions of n into j summands different from ¢ (see [3]). For example,
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with ¢ = 2, the segments 123/4/5678/9 correspond to  * | * | % % % % | * which identifies the
composition 3+ 1+4+ 1. The corresponding number of partitions is the number of compositions
of n into j summands without ¢, that is, wy(n, 7). It is clear that the subsequent construction in
the second step generates as many partitions as the number of k-partitions of [j] into blocks of
nonconsecutive elements. This number is known to be S(j—1, k—1) (see [4]). Thus for each j the
number of partitions P is w;(n, j)S(j — 1,k —1). Hence g(n, k,t) = > wi(n, j)S(j — 1,k —1)
which proves the theorem in view of (14). [l

Remark 2. Since g(n,k,1) = go(n, k), one may use Theorem 3.2 and Equation (3) to obtain the
following identity which is reminiscent of other identities in Shattuck’s collection [9]:

n— m—ol(_l)i(?) <nn__1;li)5(m—1>k_1) _ Z (n j—i; 1)S(j—1,/€—1)a n>k>1.

m=k 1= j=>1

Corollary 3.3.1. The number of partitions of [n| that contain no isolated t-successions is given

o) = ZZ(—D(]) ("2 2B,

where B(n) denotes the n-th Bell number, defined by B(n) =Y, S(n, k).

4 Partitions containing isolated t-successions

We now consider the general enumeration of k-partitions of [n] containing » > 0 isolated
t-successions.

Theorem 4.1. Given positive integers n, k,t,r with 1 < k <n, 0 < rt <n, 1 < r, we have
either of the following relations:

gr(n,k,t) = g.(n— 1,k —1,t) + kg, (n — 1, k, t)
—grn—t,k—1,t) — (k—1)g.(n — t, k,t)
—groi(n—t—1k—=1,t)— (k—1)g—1(n —t — 1,k, )
+gn—t—-—1Lk—-1t)+(k—-1)g(n—t—1kt)
4 gra(n—tk—1,8) + (k= 1)go_s(n — t, k. 1), (15)

gr(n7k7t) = Z(gr(n _j7 k— 17t> + (k - 1)gr(n - ja kat)) + gr—l(n —t, k— 17t>

J=1

+(k—1)g,1(n—t,k,t)—g.(n—t,k—1,¢t) — (k—1)g.(n — t, k,t).  (16)

gt(oaoat) = 50ra gO(”? k7t) = g(”a k>t)7 gr(rt7kat) = S(T’ - 17 k— 1)7 gr‘(n7 1>t) = 5nt5r17
gr(na n,t) = 5nr51ta gr(t + 17 17t) = 50ra gr(t + 17 27t) = 51t52r + 2(1 - 51t)51r~
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Proof. Let G,(n, k,t) denote the set of partitions enumerated by g,.(n, k, t). The proof is obtained
in each case by constructing a partition P = By/--- /By € G,(n, k,t).

Proof of (15). (i) The number of partitions in P containing the isolated succession [n — j + 1,n],
JjEt—1]is

t—

—

(gr( jak_17t)+(k_1)gr(n_j>k>t))' (17)

1

J
(ii) The number of partitions in G,(n — 1,k,t) that do not contain the isolated successions
[(n—1) —j+1,(n—1)],j € [t], i.e., partitions in which n — 1 belongs to a succession of
length > ¢ + 1, 1s

t—1

gr(n—1,k,t) —

Fﬁ

(gr(n—=1—=g,k=1,t)+ (k—1Dg-(n—1—jk,t))

groan—t =1k =18)+ (k=g (n—t—1kt).  (18)

N .

So we put n into the block containing n — 1 to obtain a partition P containing [n — ¢ + 1, n],
C>t42.
(iii) The number of partitions in P containing the isolated succession [n — ¢, n| is

gn—t—1k—1,t)+ (k—1)g.(n —t —1,k,1). (19)
(iv) Lastly, the number of partitions in P containing the ¢-succession [n — ¢ + 1, n] is
gr—a(n—t, k—1,t)+ (k= 1)g,—1(n —t, k, ). (20)

Addition of the expressions in (17) to (20) gives

~
—

gr(n,k,t) = (g:(n—7,k—1,t)+ (k—1Dg,(n— 34,k 1))

7=1

t—1
+gn =1k t) =) (go(n—1=j,k=1,t)+ (k= 1)g(n— 1 — j k1))
7j=1

—(gr-1in—t—=1k—=1,t)+ (k= 1)gr—1(n —t —1,k,t))
+gr(n_t_ 17k_ 17t) + (k - 1)gr(n_t_ 17k7t)
+ga(n—tk—1,t)+(k—1)g._1(n—1t,k,t), (21)

which simplifies to the first recurrence (15).

Proof of (16). The summation accounts for the number of partitions P in which n belongs to
an isolated succession of length j # t provided that the ¢-th summand is excluded, that is, the
subtracted quantity ¢,(n — ¢,k — 1,t) + (k — 1)g,.(n — t, k,t). When added to the number of
partitions in which n belongs to an isolated ¢-succession, given by (20), we obtain (16).

The initial values may be verified independently except possibly the following two. First,
gr(rt,k,t) = S(r — 1,k — 1) because the r > 1 instances of t-successions, namely, (1,...,¢),
(t+1,...,2t),...,(t(r — 1) + 1,...,7t), appear in valid partitions of [rt¢] provided that each
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pair in a block are isolated or non-consecutive. So the number of cases is equal to the number
of partitions of [r] into blocks of non-consecutive integers, that is S(r — 1,# — 1). Second,
g-(t+1,2,t) = 1 or 2. Indeed ¢, (¢t + 1,2,t) = 2 because of the partitions 1/2,...,¢ + 1 and

., t/t+1, while go(t + 1,2,t) = 1 provided that ¢ = 1 giving the trivial partition 1/2. Other
values of ¢,r give g,(t + 1,2,¢t) = 0. Combining the three cases we obtain g,(t + 1,2,t) =
01409 + 2(1 — 014) 01, O

In order to obtain an explicit formula for g,.(n, k,t), we need the formula for the number of
compositions of n into j summands that contain 7 occurrences of . Any such composition may
be obtained by designating r of the j positions to hold ¢’s, in (,{ ) ways; and then obtaining a
composition of n — rt without ¢’s into the other j — r positions, in w(n — rt, j — r) ways. The
number of compositions generated is (7)w,(n — rt, j —r).

Therefore, using a reasoning similar to the proof of Theorem 3.2 we obtain the solution of
(15) and (16) in the form

gr(n, k,t) = E (J)wt(n —rt,j—r)S(j—1,k—1), n>rt. (22)
r
j=1

Then applying Equation (14), the next theorem follows.

Theorem 4.2. We have
7 I (7 =r\(n—rt—1—1it .
gr(n,k‘,t)zz <r> Z(—l)z( ; )(j_r_l_i )S(j—l,k:—l), n > rt,
j=1 =0
where g,.(rt, k,t) = S(r—1,t—1).

For example, the 2-partitions of [5] are distributed according to containment of isolated
2-successions as follows:

90(5,2,2) =6:1,2,3,4/5;1,2,3,5/4:1,3,4,5/2;1,3,5/2,4;1,5/2,3,4:1/2, 3,4, 5.
91(5,2,2) =6:1,2,3/4,5;1,2,4/3,5:1,3,4/2,5;1,4/2,3,5,1,2/3,4,5:1,3/2,4, 5.
92(5,2,2) =3:1,2,4,5/3:1,4,5/2,3:1,2,5/3, 4.

(5,2,2)

gt _O,t>2

’

The values of g,.(n, k, t) are illustrated in Table 2 with t = 2 and r = 1 for 1 < n < 10.

Corollary 4.2.1. The number of k-partitions of [n| containing r isolated t-successions is given
by fr(na t) = Zk 97«(”, k> t)

il n—rt—1—it
fr(n,t) = ;()120 ( ; )(]—r—l—z)B(]_l)’ n>rt,

where f.(rt,t) = B(r —1).
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n\k| 1 | 2| 3] 4] 5 | 6 | 7] 8| 9 |filnt)]
2 1 0 0 0 0 0 0 0 0 1
3 0 2 0 0 0 0 0 0 0 2
4 0 3 3 0 0 0 0 0 0 6
5 0 6| 12 4 0 0 0 0 0 22
6 o] 13| 41 30 5 0 0 0 0 89
7 0| 26| 132 162 60 6 0 0 0 386
8 0| 50| 402 762| 475| 105 7 0 0 1801
9 0| 961178 | 3302| 3120| 1150 | 168 8 0 9022
10 0| 1843368 | 13560 | 18389 | 10110 | 2436 | 252 9| 48308

Table 2. Values of g,(n, k,t), fr(n,t) =>_, g:(n, k,t) fort =2, r = 1.

4.1 Generating functions

In this section we obtain generating functions for g(n, k, t) and g, (n, k, ).
Let G(z; k. t) = >, 5, 9(n, k, t)a". Since g(n, k,t) = >, wi(n, j)S(j—1,k—1), we have

J
G(z; k,t) Zwt:p] ]—1;k—1)=2(1f$_xt> S(j—1k—-1),

Jj=k J=k

which gives

Glaikt) = [ —— — 2t > ’ —J:tJS(] k—1)
T 1—x , 1—x ’
j>k—1
Using the fact that ) -, S(j, k)2’ = — , we have
B Hj:l(l jx)
(- )"

Let wy(n, k,r) denote the number of compositions of n into k£ summands which contains r
summands equal to ¢. Then from the proof of Theorem 4.2 we know that

wi(n, k,r) = (i) wi(n —rt, k—r).

Let G, (z;k,t) = >, -, 9-(n, k, t)2" be the generating function for g, (n, k, t). Then Equation
(22) implies
(x5 kL t) Zwt:vj, S(j—1,k—1).

>k

k T k—r
N = rt — t
we(x; kyr) (T)ac (1—:c x) :

90

On other hand,




Thus,

5

Conclusion

This paper has undertaken a thorough enumeration of set partitions according to distinct strings of

consecutive integers, i.e., successions, lying in a block. We have provided complete formulas—

recursive, generating function and explicit—for the new function ¢;(n, k) that enumerates the

k-partitions of [n] containing only isolated successions of length > ¢, in analogy with the

t-associated Stirling numbers of the second kind. We have also considered the generalized

enumeration function g,(n, k,t), r > 0 using the same agenda, and stated the corresponding

results.
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