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1 Introduction

The work on the present paper started around 2015. Section 3 was completed in the middle
of 2018, when I decided that it will be better if there is a computational evaluation of the
effectiveness of the formulas for the n-th prime number pn, described in this paper. I asked my
former PhD student—now Associate Professor—Dimitar Dimitrov to implement in software this
idea and make a detailed comparison of the computation times that different existing formulae
require to compute the n-th prime. His work resulted in his publication [10], where my research
was referenced as “unpublished manuscript”. Dimitrov found in the literature and included in his
research, four new formulas—three of S. M. Ruiz and one of I. Kaddoura and S. Abdul-Nabi—
which I also am adding in my literature review in Section 2.

While the motivation of his paper was that “unpublished manuscript” of mine, back in that
moment in 2019 I was working on other research problems and I delayed the present publication
hoping that some other formulas are on the way. By these reasons, only now, two years later, I
have revisited my research and I have added four new formulas in Section 4.
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2 Some formulas for the n-th prime number

Although the problem for finding an explicit formula for the n-th prime number is very old, it
obtained solutions even in the second part of the last century.

Probably, the first explicit formula giving the n-th prime number pn was introduced in 1962
by L. Veshenevskiy in [21]. It has the form:

pn = 2 +
1 + (−1)2n−k2

2
+

1 + (−1)2(n−k2).(n−k2−k3)

2
+

1 + (−1)2(n−k2).(n−k2−k3).(n−k2−k3−k4)

2
+ . . .

where

k2 =
1 + (−1)2(2−2.2)2

2
,

k3 =
1 + (−1)2(3−2.2)2.(3−2.3)2.(3−3.2)2

2
,

· · ·

kt =
1 + (−1)2(t−2.2)2.(t−2.3)2...(t−2.t)2(t−3.2)2.(t−3.3)2...(t−3.(t−1))2...(t−m.2)2.(t−m.3)2...(t−m.(t−m+2))2...(t−t.2)2

2
.

In Paulo Ribenboim’s book [16], three other formulas for pn are discussed. The first of them
is introduced in 1964 by C. P. Willans [22]. For every integer j ≥ 1 let

F (j) =

[
cos2 π

(j − 1)! + 1

j

]
and

H(j) =

[
sin2 π{(j−1)!}2

j

sin2(π
j
)

]
,

where [x] is the integer part of the real number x.
Let π be the well-known prime counting function. Then it satisfies the equalities

π(n) = −1 +
n∑
j=1

F (j)

and

π(n) =
n∑
j=2

H(j).

Hence, for the natural number n ≥ 2

pn = 1 +
2n∑
m=1


 n

m∑
j=1

F (j)


1/n


= 1 +
2n∑
m=1

[[
n

1 + π(m)

]1/n
]

= 1 +
2n∑
m=1


 n

1 +
m∑
j=2

H(j)


1/n
 .
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In 1971 J. M. Gandhi [11] introduced the recurrent formula

pn =

1− 1

log 2
log

−1

2
+
∑
d|Pn−1

µ(d)

2d − 1

 ,
where µ is the well-known Möbius function and Pn−1 = p1 . . . pn−1, with p1, . . . , pn−1 already
calculated prime numbers.

Following [16], we note that J. Minač in an unpublished paper gave the formula

π(n) =
n∑
j=2

[
(j − 1)! + 1

j
−
[

(j − 1)!

j

]]
.

Now, for pn, e.g., Willans formula can be used with the new form of π(n).
In 2000 and 2005, S. M. Ruiz introduced the following three formulas [17, 18]:

pn = 1 +

[2n logn+2]∑
k=1

(
1−

[
1

n

k∑
j=2

(
1 +

[
1

j

(
2−

j∑
s=1

([
j

s

]
−
[
j − 1

s

]))])])

pn = 1 +

[2n logn+2]∑
k=1

(
1−

[
1

n

k∑
j=2

[
LCM(1, 2, . . . , j)

j.LCM(1, 2, . . . , j − 1)

]])
,

pn = [n log n] +

[n logn+n(log(logn)−0.5)+3]∑
k=[n logn]

(
1−

[
1

n

k∑
j=2

[
LCM(1, 2, . . . , j)

j.LCM(1, 2, . . . , j − 1)

]])
,

and in 2012, I. Kaddoura and S. Abdul-Nabi in [12] give the formula:

pn = 3 + 2[n log n]−
[2n logn+2]∑

x=7

4 +
∑
j=1

[
x−1

6

]
[S(6j + 1)] +

∑
j=1

[
x+1

6

]
[S(6j − 1)]

n

 ,
where

S(x) = −
∑[

[
√
x]
6

]
+1

k=1

([[
x

6k+1

]
− x

6k+1

]
+
[[

x
6k−1

]
− x

6k−1

])
2
([

[
√
x]

6

]
+ 1
) .

In [3, 8, 9], the author introduced four other explicit formulas, giving the n-th prime number.
First, let us define functions sg, sg and fr by:

sg(x) =

{
0, if x ≤ 0

1, if x > 0
, sg(x) =

{
0, if x 6= 0

1, if x = 0
,

where x is a real number and

fr

(
p

q

)
=

{
0, if p = 1

1, if p 6= 1
,

where p and q are natural numbers, such that (p, q) = 1.
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Let the natural number n > 1 have a canonical representation

n =
k∏
i=1

pαi
i , (1)

where p1, . . . , pk are distinct prime numbers and α1, . . . , αk ≥ 1 are natural numbers.
The well-known arithmetic functions ϕ, ψ and σ (see, e.g., [14, 15]) have the forms:

ϕ(n) =
k∏
i=1

pαi−1
i (pi − 1), ϕ(1) = 1,

ψ(n) =
k∏
i=1

pαi−1
i (pi + 1), ψ(1) = 1,

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
, σ(1) = 1.

The following four representations of function π hold for every natural number n ≥ 2 with
canonical form (1) (here and below, the index of the function π corresponds to the function, that
is used in the representation):

πϕ(n) =
n∑
j=2

sg(j − 1− ϕ(j));

πψ(n) =
n∑
j=2

sg(ψ(j)− j − 1);

πσ(n) =
n∑
j=2

sg(σ(j)− j − 1);

πfr(n) =
n∑
j=2

fr

(
j

(j − 1)!

)
.

In [8], the author used the arithmetic function η, given for the natural number n ≥ 2 with
canonical form (1) by

η(n) =
n∑
i=1

αi.pi,

for constructing the following new formula for π:

πη(n) =
n∑
j=2

sg(j − η(j)).

In 1987, the author introduced an arithmetic function with properties similar to the operation
“differentiation” [1, 6]. For a natural number n ≥ 2, with the canonical form (1), it has the form:

δ(n) =
k∑
i=1

αip
α1
1 . . . p

αi−1

i−1 p
αi−1
i p

αi+1

i+1 . . . pαk
k .

132



Obviously, if p is a prime number, then from the definition it follows that

δ(p) = 1.

In [9], the author used this function for constructing the following formula for π:

πδ(n) =
n∑
j=2

[
1

δ(j)

]
.

If π is one of the representations πϕ, πψ, πσ, πfr, πη, πδ, then for every natural number n:

pn =

C(n)∑
i=0

sg(n− π(i)),

where (see [13, 5.27, p. 90])

C(n) =

[
n2 + 3n+ 4

4

]
.

Therefore, the formula for n-th prime number admits the forms

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(j − 1− ϕ(j))

)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(ψ(j)− j − 1)

)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(σ(j)− j − 1)

)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

fr

(
j

(j − 1)!

))

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(j − η(j))

)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

[
1

δ(j)

])
,

where
b∑
i=a

• = 1 for a > b.

In [20] Mladen Vassilev-Missana, continuing the idea from [3], proposed the following three
formulas:

pn =

C(n)∑
j=0

 1

1 +

[
π(j)

n

]
 ,

pn = −2.

C(n)∑
j=0

ζ

(
−2.

[
π(j)

n

])
,
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pn =

C(n)∑
j=0

1

Γ

(
1−

[
π(j)

n

]) ,
where π(j) can be evaluated by some one of the above formulas, ζ is Riemann’s Zeta-function
and Γ is Euler’s Gamma-function.

3 New formulas for the n-th prime number1

First, we give the following new representations of formulas for πϕ, πψ, and πσ:

πϕ(n) =
n∑
j=2

[
ϕ(j)

j − 1

]
,

πψ(n) =
n∑
j=2

[
j + 1

ψ(j)

]
,

πσ(n) =
n∑
j=2

[
j + 1

σ(j)

]
.

These formulas are equivaled to the previous ones, because if j is a prime number, then[
ϕ(j)

j − 1

]
= sg(j − 1− ϕ(j))

=

[
j + 1

ψ(j)

]
= sg(ψ(j)− j − 1)

=

[
j + 1

σ(j)

]
= sg(σ(j)− j − 1) = 1

and if j is a composite number, then[
ϕ(j)

j − 1

]
= sg(j − 1− ϕ(j))

=

[
j + 1

ψ(j)

]
= sg(ψ(j)− j − 1)

=

[
j + 1

σ(j)

]
= sg(σ(j)− j − 1) = 0.

Second, we introduce the following three well-known arithmetic functions (see, e.g., [14,15]),
related to the canonical representation (1) of the natural number n ≥ 2:

τ(n) =
k∏
i=1

(1 + αi)

ω(n) = k,

1New, for the middle of 2018.
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and

Ω(n) =
k∑
i=1

αi.

Obviously, for every prime number p,

ω(p) = ω(p2) = ω(p3) = · · · = 1.

Let a natural number n ≥ 2 is given by (1) and p1 is the minimal prime numbers among
p1, . . . , pk. We introduce function ω by

ω(n) = α1ω(n).

Then,
ω(n) = 1

if and only it n is a prime number.
Now, we can introduce the following three new formulas for the value of π:

πτ (n) =
n∑
j=2

sg(τ(j)− 2) =
n∑
j=2

[
1

τ(j)− 1

]

πω(n) =
n∑
j=2

sg(ω(j)− 1) =
n∑
j=2

[
1

ω(j)

]
,

and

πΩ(n) =
n∑
j=2

sg(Ω(j)− 1) =
n∑
j=2

[
1

Ω(j)

]
.

For the three cases, if j is a prime number, then[
1

τ(j)− 1

]
= sg(τ(j)− 2)

=

[
1

ω(j)

]
= sg(ω(j)− 1)

=

[
1

Ω(j)

]
= sg(Ω(j)− 1) = 1.

On the other hand, if j is a composite number, then τ(j)− 1 > 1, ω(j) > 1 and Ω(j) > 1, and[
1

τ(j)− 1

]
= sg(τ(j)− 2)

=

[
1

ω(j)

]
= sg(ω(j)− 1)

=

[
1

Ω(j)

]
= sg(Ω(j)− 1) = 0.

Therefore, the sum in the right-hand side of πτ (n), πω(n)and πΩ(n) is equal to π(n).

135



Finally, we can define functionP over the natural number n ≥ 2 with canonical representation
(1), by:

P(n) =

1, if n is a prime number

0, if n is a composite number
.

Then

πP(n) =
n∑
j=2

P(j).

Theorem 3.1. For every natural number n:

pn =

C(n)∑
i=0

sg(n− πτ (i)), (2)

pn =

C(n)∑
i=0

sg(n− πω(i)), (3)

pn =

C(n)∑
i=0

sg(n− πΩ(i)), (4)

pn =

C(n)∑
i=0

sg(n− πP(i)). (5)

Proof. Let us remind the fact (see [13]) that

pn < C(n)

for every natural number n. Now, we can see that for a fixed natural number n, the expressions
n − πτ (i), n − πω(i), n − πΩ(i), and n − πP(i) are monotonically decreasing with respect to i,
and same is valid for sg(n − πτ (i)), sg(n − πω(i)), sg(n − πΩ(i)) and sg(n − πP(i)). When
i = 0, 1, . . . , pn − 1, the numbers n − πτ (i), n − πω(i), n − πΩ(i), and sg(n − πP(i)) are equal
to 1, and when i ≥ pn, these numbers are equal to 0.

Therefore, the sums in (2), (3), (4), and (5) contain exactly pn in number units, that proves the
Theorem.

As a corrolary, we obtain the representations;

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

[
1

τ(j)− 1

])

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

[
1

ω(j)

])

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

[
1

Ω(j)

])
,

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

[
1

Ω(j)

])
.
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At the end, we mention that the following Open Problem is interesting: Which formula for
pn has the minimal computational compexity?

4 Instead of Conclusion: Four new formulas
for the n-th prime number

During the last 25 years, the author introduced some new arithmetic functions that also can be
used for determination of the n-th prime number. They are (using representation (1) for n):

• Irrational factor [2, 19]:

IF (n) =
k∏
i=1

p
1/αi

i ,

• Converse factor [4, 19]:

CF (n) =
k∏
i=1

αpii ,

• Restrictive factor [5, 19]:

RF (n) =
k∏
i=1

pαi−1
i ,

• a function, in some sense dual to σ [7]

χ(n) =
k∏
i=1

(pαi
i − p

αi−1
i + · · ·+ (−1)αi−1pi + (−1)αi)

For these functions we obtain:

πIF (n) =
n∑
i=2

[
1

ω(n)IF (n)

]
,

πCF (n) =
n∑
i=2

[
1

ω(n)CF (n)

]
,

πRF (n) =
n∑
i=2

[
1

ω(n)RF (n)

]
,

πχ(n) =
n∑
j=2

sg(j − 1− χ(j))

and

pn =

C(n)∑
i=0

sg(n− πIF (i)) =

C(n)∑
i=0

sg(n− πCF (i)) =

C(n)∑
i=0

sg(n− πRF (i)) =

C(n)∑
i=0

sg(n− πχ(i)).
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