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Abstract: For any positive integer t, let ord2 t denote the order of 2 in the factorization of t.
Let a, b be two distinct fixed positive integers with min{a, b} > 1. In this paper, using some
elementary number theory methods, the existence of positive integer solutions (x, n) of the
polynomial-exponential Diophantine equation (∗) (an−1)(bn−1) = x2 with n > 2 is discussed.
We prove that if {a, b} 6= {13, 239} and ord2(a

2 − 1) 6= ord2(b
2 − 1), then (∗) has no solutions

(x, n) with 2 | n. Thus it can be seen that if {a, b} ≡ {3, 7}, {3, 15}, {7, 11}, {7, 15} or {11, 15}
(mod 16), where {a, b} ≡ {a0, b0} (mod 16) means either a ≡ a0 (mod 16) and b ≡ b0
(mod 16) or a ≡ b0 (mod 16) and b ≡ a0 (mod 16), then (∗) has no solutions (x, n).
Keywords: Polynomial-exponential Diophantine equation, Pell’s equation.
2020 Mathematics Subject Classification: 11D61.

1 Introduction

Let N be the set of all positive integers. Let a, b be two distinct fixed positive integers with
min{a, b} > 1. In 2000, L. Szalay [16] first discussed the solution of the polynomial-exponential
Diophantine equation

(an − 1)(bn − 1) = x2, x, n ∈ N, n > 2. (1)
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He proved, e.g., that if {a, b} = {2, 3}, then (1) has no solutions (x, n). This result has been
generalized and it has been proved that if a ≡ 3 (mod 4) and b ≡ 0 (mod 2) (or vice versa),
then (1) has no solutions (x, n) by P.-Z. Yuan and Z.-F. Zhang [20] with the correction on the
exceptional case due to A. Noubissie, A. Togbé and Z.-F. Zhang [15]. J. H. E. Cohn [2] gave
several criteria which help to solve (1). For example, he showed that if ord2(a−1) and ord2(b−1)

have opposite parity, where ord2 t is said the order of 2 in the factorization of a positive integer
t, then (1) has no solutions (x, n) with 2 - n. Using this result, X.-Y. Guo [3] proved that if
{a, b} 6= {13, 239} and ord2(a − 1) 6≡ ord2(b − 1) (mod 2), then (1) has no solutions (x, n).
In addition, several researchers have solved a lot of cases for (1) (see [4–6, 8–13, 17–20] and [7,
Section 3.1]). But, in general, this is a problem that is far from resolved.

In this paper, we prove the following theorem:

Theorem 1.1. If {a, b} 6= {13, 239} and ord2(a
2 − 1) 6= ord2(b

2 − 1), then (1) has no solutions
(x, n) with 2 | n.

Combining Theorem 1.1 with [2, Result 5 (b)] (see Lemma 3.3 below) enables us to solve (1)
in many of the cases where a ≡ b ≡ 3 (mod 4), which have not been studied so far.

Corollary 1.2. Suppose that either of the following conditions holds:

(1) a ≡ b ≡ 3 (mod 4) and a 6≡ b (mod 8);

(2) a ≡ b ≡ 7 (mod 8) and a 6≡ b (mod 16).

Then, (1) has no solutions (x, n).

2 Preliminaries

Let d be a fixed nonsquare positive integer. By the basic properties of Pell’s equation

u2 − dv2 = 1, u, v ∈ N (2)

(see Chapter 8 of [14]), we can obtain the following lemma immediately.

Lemma 2.1. Equation (2) has solutions (u, v), and it has a unique solution (u1, v1) such that
u1 + v1

√
d ≤ u + v

√
d, where (u, v) runs through all solutions of (2). The solution (u1, v1) is

called the least solution of (2). Moreover, for any positive integer k, let

uk =
1

2

(
θk + θ̄k

)
, vk =

1

2
√
d

(
θk − θ̄k

)
, (3)

where

θ = u1 + v1
√
d, θ̄ = u1 − v1

√
d. (4)

Then, (u, v) = (uk, vk) (k = 1, 2, · · · ) are all solutions of (2).
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Lemma 2.2. If 2 | k, then ord2 vk ≥ 1 + ord2(u1v1).

Proof. Since 2 | k, by (3) and (4), we have

vk = u1v1

k/2−1∑
i=0

(
k

2i+ 1

)(
u21
)k/2−i−1 (

dv21
)i
. (5)

Since u21 − dv21 = 1, one of u21 and dv21 has to be even and the other has to be odd, whence we get

2 |
k/2−1∑
i=0

(
k

2i+ 1

)(
u21
)k/2−i−1 (

dv21
)i
. (6)

Therefore, by (5) and (6), we obtain the lemma immediately.

Lemma 2.3. Let r, s be two positive integers. If ord2 vr < ord2 vs, then 2 | s.

Proof. For any positive integer k, by (3) and (4), we have vk ≡ 0 (mod v1). It implies that

ord2 vr ≥ ord2 v1. (7)

If 2 - s, by (3) and (4), then we have

vs = v1

(s−1)/2∑
j=0

(
s

2j + 1

)(
u21
)(s−1)/2−j (

dv21
)j
. (8)

Recall that u21 6≡ dv21 (mod 2). Hence, since 2 - s, we get

2 -
(s−1)/2∑
j=0

(
s

2j + 1

)(
u21
)(s−1)/2−j (

dv21
)j
. (9)

Therefore, by (8) and (9), we have

ord2 vs = ord2 v1. (10)

However, since ord2 vr < ord2 vs, by (7) and (10), we get ord2 v1 ≤ ord2 vr < ord2 vs = ord2 v1,
a contradiction. Thus, we obtain 2 | s. The lemma is proved.

Lemma 2.4 (Proposition 8.1 of [1]). The equation

2X2 − 1 = Y m, X, Y,m ∈ N, X > 1, Y > 1, m > 2 (11)

has the only solution (X, Y,m) = (78, 23, 3).

3 Proofs of Theorem 1.1 and Corollary 1.2

In this section, let (x, n) be a solution of (1).

Lemma 3.1 ([15]). We have

an − 1 = dy2, bn − 1 = dz2, d, y, z ∈ N, d > 1, d is square-free. (12)

Lemma 3.2 ([2, Result 2]). If {a, b} 6= {13, 239}, then 4 - n.
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Lemma 3.3 ([2, Result 5 (b)]). If ord2(a − 1) = ord2(b − 1) > 0 and 23+ord2(a−1) - (a − b),
then 2 | n.

Proof of Theorem 1.1. We now assume that 2 | n. Then, by Lemma 3.1, we see from (12) that
(2) has two solutions (u, v) = (an/2, y) and (bn/2, z). Hence, by Lemma 2.1, we have

an/2 = ur, y = vr, b
n/2 = us, z = vs, r, s ∈ N. (13)

Since {a, b} 6= {13, 239}, by Lemma 3.2, we have

2||n. (14)

Hence, we get

ord2(a
n − 1) = ord2(a

2 − 1), ord2(b
n − 1) = ord2(b

2 − 1). (15)

On the other hand, since n > 2, by (14), n/2 is an odd positive integer with
n

2
≥ 3. (16)

By (12) and (15), we have

ord2(a
2 − 1) = ord2(a

n − 1) = ord2(dy
2) = ord2 d+ 2 ord2 y,

ord2(b
2 − 1) = ord2(b

n − 1) = ord2(dz
2) = ord2 d+ 2 ord2 z. (17)

Since ord2(a
2 − 1) 6= ord2(b

2 − 1), we see from (17) that ord2 y 6= ord2 z. Further, since a and b
are symmetric in (1), by (12), we may assume that

ord2 y < ord2 z (18)

without loss of generality.
By (13) and (18), we have

ord2 vr < ord2 vs. (19)

Hence, by Lemma 2.3, we get from (19) that 2 | s. Then, by (3), (4) and (13), we have

bn/2 + z
√
d = us + vs

√
d =

(
u1 + v1

√
d
)s

=

((
u1 + v1

√
d
)s/2)2

=
(
us/2 + vs/2

√
d
)2
,

whence we get

bn/2 = u2s/2 + dv2s/2. (20)

Further, by Lemma 2.1, we have

u2s/2 − dv2s/2 = 1. (21)

By (20) and (21), we get

bn/2 = 2u2s/2 − 1. (22)
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We find from (16) and (22) that (11) has a solution (X, Y,m) = (us/2, b, n/2). Therefore, by
Lemma 2.4, we have

us/2 = 78, b = 23,
n

2
= 3. (23)

By (21) and (23), we get d = 6083 = 7× 11× 79 and vs/2 = 1. It implies that s/2 = 1 and

u1 = 78, v1 = 1, vs = v2 = 2u1v1 = 156. (24)

We see from (24) that ord2 vs = 2. Hence, by (19), we have

ord2 vr ≤ 1. (25)

Since ord2(u1v1) = 1 by (24), applying Lemma 2.2 to (25), we get 2 - r. Therefore, by (3), (4),
(13), (23) and (24), we have

a3 = an/2 = ur =
1

2

((
78 +

√
6083

)r
+
(

78−
√

6083
)r)

= 78

(r−1)/2∑
i=0

(
r

2i

)
78r−2i−1 · 6083i. (26)

However, since 2||78 and 2 - r, we get from (26) that 2||a3, a contradiction. Thus, the theorem is
proved.

Proof of Corollary 1.2. Suppose first that condition (1) holds. Then, ord2(a−1)=ord2(b−1)=1

and b− a 6≡ 0 (mod 8). Hence, by Lemma 3.3 we obtain

2 | n. (27)

On the other hand, putting a = 4a0 + 3 and b = 4b0 + 3 with a0, b0 non-negative integers, we
have b− a = 4(b0 − a0) 6≡ 0 (mod 8), that is,

a0 6≡ b0 (mod 2). (28)

Since a2 − 1 = 8(2a20 + 3a0 + 1) and b2 − 1 = 8(2b20 + 3b0 + 1), we see from (28) that
ord2(a

2 − 1) 6= ord2(b
2 − 1). It follows from Theorem 1.1 that 2 - n, which contradicts (27).

Suppose second that condition (2) holds. Then, in the same way as above we obtain (27). On
the other hand, putting a = 8a0 + 7 and b = 8b0 + 7 with a0, b0 non-negative integers, we have
b − a = 8(b0 − a0) 6≡ 0 (mod 16), that is, (28) holds. Since a2 − 1 = 16(4a20 + 7a0 + 3) and
b2 − 1 = 16(4b20 + 7b0 + 3), we see from (28) that ord2(a

2 − 1) 6= ord2(b
2 − 1). It follows from

Theorem 1.1 that 2 - n, which contradicts (27). Therefore, the corollary is proved.
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