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Abstract: Chains of concatenated finite binary words are considered, where each word, except
possibly the very first one, is composed of alternating blocks of zeroes and ones with block lengths
not exceeding two. These chains are formed following two evolution schemes. The first scheme
is standard, where alternating blocks are visited at random. In the second approach, proposed
by us in this paper, each subsequent word of the chain is uniquely determined by its immediate
predecessor, being formed as a specifically inflated version of that word. Famous Kolakoski
sequence is then just one, very special example of such deterministic evolution when one starts
from its third element. We present heuristic arguments supported by simulations indicating that
all such deterministic infinite chains should have the asymptotic density of digit 1 equal 1/2 and
that the subsequent word lengths asymptotically scale with factor of 3/2 and hence the density of
1’s in subsequent finite words may also tend to 1/2.
Keywords: Automatic sequences, Random and deterministic evolution of binary words,
Algorithmic combinatorics, Kolakoski and related sequences, Scaling law.
2020 Mathematics Subject Classification: 11B83, 11B85, 11R45, 11Y55, 65B10, 68R15.

1 Introduction

Almost all observations presented in this paper will be formulated as properties of binary sequences
with elements σ ∈ {0, 1}, though in some cases we will turn to the alphabets {1, 2} or {−1, 1}.
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In particular, for the {1, 2} alphabet one uses τ = 1 + σ transformation rule and for the {−1, 1}
alphabet of Ising spin variables one uses ν = 2σ − 1 transformation rule. The basic notation
and definitions mostly follow those used in the monographs [1, 4, 13]. wk will always be a finite
binary word labelled with an integer k, |wk| is the number of digits in it (word’s length) and ||wk||
is the number of digits 1 within that word. If wk consists of digits 0 and 1, then ||wk|| is its l1
norm. Binary word can be concatenated into finite chains w1w2w3 . . . wM of words of total length∑
|wk|. This sum and related sums below run from k = 1 till k = M . The density of a particular

word wk is defined as

d(wk) =
||wk||
|wk|

(1)

and that of a finite chain as

d(w1w2 . . . wM) =
||w1w2 . . . wM ||∑

|wk|
=

∑
d(wk)|wk|∑
|wk|

. (2)

Of particular interest for infinite chains generated in some procedures is the existence of the limit
of d(w1w2w3 . . . wM) for M → ∞. In terms of the binary variable used below for subsequent
digits of built words, it is equivalent to the problem of the Cèsaro summability of corresponding
infinite series

∑∞
k=1 σk.

For the corresponding one-sided Ising chains one is concerned with the existence of the
average magnetisation per spin of the system.

Two simple observations are important in this context:

a) If an infinite chain, for which this limit exists, is modified into another infinite chain by
augmenting it at the beginning with an arbitrary (finite) word w0 or by dropping any finite
number of its initial words, then both modifications will have the same limiting behaviour
as the original chain.

b) The existence of the limit of partial densities d(wk) for k →∞ implies the existence of the
limit of d(w1w2w3 . . . wM) for M → ∞. It is also well known that the converse statement
is not true – particular densities may endlessly fluctuate around some value with overall
infinite chain density still convergent to some limit.

We will concentrate on a widely studied class of binary sequences not containing sub-sequences
000 and 111, that is free of cubes of single digit words 0 and 1. These sequences may still contain
cubes www of some other concatenated binary words w of length ≥ 2. Binary sequences which
do not contain cubes of any finite binary wordw are also called cube-free in the literature, but they
of course constitute much more restricted family of binary sequences within which, for example,
periodic infinite sequences of any period are excluded by definition.

We will begin our analysis of evolutions of binary words of our class with their equivalent
interpretation as walks on graphs from Section 2, followed then by natural in this context, standard
analysis of completely random evolutions. Stationary distributions giving information about
expected digit densities in such infinite walks are also of interest.

Complementary to randomly created chains are infinite chains of words created according to
some deterministic evolution rules defining the chain, and where each word in the chain contains
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a complete prescription for the creation of its immediate successor. The following Section 3
discusses such a model, proposed by us, where subsequent words are both cube-free and typically
have increasing length, being specifically inflated versions of their predecessors. We conjecture
that the described there specific inflation procedure results in limiting densities equal 1/2 for any
starting initial binary word and we support the claim by some numerical evidence and related
estimates. Two of such evolutions happen to lead to infinite chains of words coinciding with
the famous Kolakoski–Oldenburger sequence [16, 19], if one modifies one or two their initial
elements. The relationship of our deterministic inflation scheme with alternating morphisms
prescription, originally specifically proposed for the Kolakoski sequence in [9], is discussed
in the Appendix. Mentions and comments on some other well-known sequences generated by
morphisms are again delegated to the Appendix. In Section 4 we present numerical results for
densities of long chains, illustrate the observed asymptotic scaling law for word lengths in such
chains and following from it convergence of particular word densities. The concluding Section 6
contains some incentives for further studies of the problem and a proposal for a possible graphical
illustrations of the inflation process on 2-D square lattices.

2 Cube-free words as walks on a graph. Random evolutions

Sequences from our family of sequences could be put into one to one correspondence with walks
on a four-vertex graph with vertices marked by just four basic words 0, 11, 00 and 1 as shown on
Figure 1.

Figure 1. Basic graph for cube-free sequences

These basic words will also be called blocks or runs in the rest of the text. An obvious
observation is that in all walks on this graph, blocks composed of zeroes and ones must alternate,
i.e., each block of zeroes could only be followed by a block of ones, and vice versa.

Let N ≥ 1 be the length of a binary word formed by a concatenation of k ≥ 1 vertex words
in the order of visiting. Clearly N could be larger than k if some two-letter words are included in
a given walk. Denoting by k0, k1, k00 k11 the numbers of particular types of vertices visited in a
walk of k − 1 steps, one has:

N = k0 + k1 + 2(k00 + k11). (3)

Conversely, any finite binary word of length N not containing cubes 000 and 111 can be uniquely
represented by a walk on a graph by partitioning it from its beginning into subsequent sub-words
(our blocks) consisting of one or two identical symbols. The number of vertices visited in such a
walk is then clearly equal N − (k00 + k11) .
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Let FN be the total number of such words of length N . One may notice that FN are elements
of the Fibonacci sequence with generating elements F1 = 2, F2 = 4, satisfying the standard
recurrence relation:

FN+2 = FN + FN+1. (4)

Indeed, among all sequences of length N + 2 one may consider first those ending with words 00

or 11 which could be obtained by concatenating any word of length N ending with 0 with 11 and
all ending with 1 with 00. The other classes of words of length N + 2 ending, respectively, with
words 01 or 10 can be obtained by adding to words from the set of words of the length N + 1 a
single complementary digit (1 to follow terminal digit 0, and 0 to follow terminal digit 1). This
observation for cube-free sequences has been apparently known for a long time, but for a more
general, recent discussion of related problems see also [3].

Some additional combinatorial results, which can be readily obtained from the graph
representation, are related to adjacency matrices of the graph from Figure 1. For any cyclic
labelling of graph vertices (like 0, 11, 00, 1; 11, 00, 1, 0 . . . or 0, 1, 00, 11; 1, 00, 11, 0, . . .) all
these matrices look the same being 4 × 4 circulant matrices which can be written in the block
form:

Ωx =

(
σx σx
σx σx

)
where σx =

(
0 1

1 0

)
(5)

is one of the Pauli matrices. The standard result of the graph theory amounts here to the statement
that the numbers of M -steps distinct walks joining two given vertices of the Figure 2 are given
by the respective matrix elements of the ΩM

x .
We are now ready for the analysis of random walks on the graph from Figure 2 announced

in the Introduction. Let us identify vertices of the graph from Figure 1 with four states and let
the transition probability along the edge joining states (0) and (1) be denoted by p. In the related
Markov chain the transition probabilities along edges {(1), (00)} and {(0), (11)} must both be
equal 1 − p and hence the transition probability along the edge {(00), (11)} is also equal p. The
transition matrix T of such Markov chain has the form of a circulant:(

(1− p)σx pσx
pσx (1− p)σx

)
. (6)

Since our graph (Figure 2) is a regular one with m = 4 vertices (i.e., having equal degrees of
all vertices, in our case equal two) the stationary distribution formula for random walks on such
graphs (see, e.g., [23]):

ps =
vertex degree

2m
(7)

determines components of the stationary distribution all equal 1/4. This also can be verified for
simple particular transition matrix of Eq. (6) by straightforward calculation. In conclusion, it
means that for any transition probability p the limiting density of 0 and 1 symbols is equal 1/2,
as intuitively expected.

Our cube-free sequences of lengthN=3k, k=1, 2, . . . can also be partitioned into subsequent
words of length three. There are six ((2 + 4), as indicated by Eq. (4)) such words: 001, 010, 001

and 101, 110, 011, which can be considered as representing a subset of vertices of a 3-D unit
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cube. Concatenation of these words into our cube-free words leads to restrictions imposed on
vertex-to-vertex transitions. All allowed transitions can be represented by a digraph with six
vertices connected by six oriented, six bi-directional edges and having six vertex loops. A
standard but lengthier analysis of the related Markov processes with equally probable out-routes
from each vertex (vertex loops counted with multiplicity one) again results in the limiting
stationary density of 1’s equal 1/2.

Two other classes of walks can be obtained after eliminating one of length two blocks from
the graph on Figure 1. One may still consider the remaining parts as linear graphs: 0− 1− 00 or
1−0−11. Random walks on them with equal 1/2 transition probabilities from the central vertex
to its neighbours lead to stationary density of 1 equal, respectively, 1/3 and 2/3 as expected.
However deterministic cube-free chains formed from words 0, 1, 11 or 0, 1, 00 may still have
interesting irrational infinite chain densities (like Fibonacci word, see Appendix and the modified
inflation rules there).

3 Deterministic evolution of cube-free words

We start by looking at the ordered pair of the first and last letter of the word w1 (these may
coincide if one starts with a word of length 1). This pair is used to determine the first block of
being created word w2: pair (0, 0) produces 1, pair (0, 1) produces 0, pair (1, 0) produces block
11 and pair (1, 1) produces block 00. In the next step, one takes an ordered pair of the second
(if any) letter of the word w1 and the last created letter of w2 and uses the same rule as above
to determine the second block of w2. This second block will always be of opposite (alternate)
type with respect to already created first block of w2 regardless of the actual type x of the second
letter of w1. Indeed, (x, 0) results in 1 or 11 and (x, 1) produces 0 or 00. This procedure is being
repeated for all, if any, subsequent letters of w1. After completion of the w2 build-up, this word
is considered as a second stage evolution program for the subsequent word w3, etc. The entire
procedure can also be summarized as follows: zeroes from the preceding word never produce
00 blocks in the next word created but become conditionally transformed into a single digit 0

or 1. On the other hand, ones from the preceding word always transform into blocks 00 or 11

depending on the type of lastly created letter of the next word.
Examples (with semicolons added in concatenations for reader’s convenience):

1. w1 = 011, w2 = 01100, w3 = 1001101, . . .

concatenated into: w1w2w3 . . . = 011; 01100; 1001101; . . . ,

2. w1 = 100, w2 = 1101, w3 = 1100100, . . .

concatenated into: w1w2w3 . . . = 100; 1101; 1100100; . . . ,

3. w1 = 0101, w2 = 011011, w3 = 0110010011, . . .

concatenated into: w1w2w3 . . . = 0101; 011011; 0110010011; . . . ,

4. the case when w1 is not cube-free: w1 = 1000, w2 = 11010, w3 = 11001001

concatenated into: w1w2w3 . . . = 1000; 11010; 11001001; . . . ,

5. another not cube-free w1 = 0000, w2 = 1010, w3 = 110110

concatenated into: w1w2w3 . . . = 0000; 1010; 110110; 1100100110 . . . .

83



It is important to notice that in this evolution words wn+1 are specifically inflated versions
of the preceding word wn and, conversely, the sequence of digits formed from the reduced by 1

lengths of subsequent blocks of wn+1 (in short, reduced runs or block lengths) always coincide
with the preceding sequence wn in the chain. For illustration of this rather obvious feature, please
read backwards all given above examples. Additionally, words with the norm ||wk|| ≥ 1 always
evolve here into words of longer length:

|wk+1| = |wk|+ ||wk||. (8)

This particular feature of the above described word inflation scheme leads to a compact expression
for the density of an entire finite chain of M words. Indeed, re-writing Eq. (8) as |wk+1|− |wk| =
||wk|| and summing them over k from 1 to M , gives:

M∑
k=1

||wk|| = |wk+1| − |wk|. (9)

Returning to the definition of density of the chain w1w2 . . . wM , Eq. (2), one obtains

d(w1w2 . . . wN) =
|wN+1| − |w1|

M∑
k=1

|wk|
. (10)

The last formula shows that the only information needed to determine the density of 1 in a
concatenated finite chain of words formed using any inflationary evolution satisfying Eq. (8),
is stored in the sequence of these words lengths. It also suggests that for the ratios of subsequent
words lengths |wk+1|/|wk| asymptotically scaling with a factor γ > 1, the finite chain densities
(Eq. (10)) of concatenated words must tend to γ − 1 for M →∞. Indeed, for |wk+1|/|wk| → γ,

d(wk) = ||wk||/|wk| = (|wk+1| − |wk|)/|wk| → γ − 1.
We expect that scaling behaviour with a particularly simple, rational factor of 3/2, is indeed

present in all infinite chains formed using above-described inflation rule when applied to an
arbitrary initial word.

3.1 Remark on backward compression

As indicated before, any second word w2 in a chain created in our evolution scheme from an
arbitrary finite word w1 is a cube-free word of the length N = |w2| = |w1| + ||w1|| being, in
general, one of the FN such words. Initial word w1 can then be restored from w2 by writing
reduced block length sequence of w2. If, however, w is an arbitrary cube-free word of length N ,
an attempt of finding its possible predecessor in the described evolution process by writing the
sequencew′ of its reduced block lengths, may lead to a predecessor which itself is not a cube-free,
or such that the concatenated word w′w cannot be obtained in the described inflation procedure
from the word w′. Examples: w = 010101, w′ = 000000 not being cube-free; w = 11011,

w′ = 101 and w cannot be restored by inflation of w′. The reader may also experiment with all
10 = 4+6 cube-free words of length 4 and conclude that half of them may not be re-created from
their compressed version rule, and two can only be preceded by words which are not cube-free.
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This observation allows elimination of many words from the entire community of FN cube-free
words of length N all those words which cannot be created from particular shorter cube-free
words in the described inflation process. This is also a route to procedures allowing obtaining
tight estimates of an infinite chain density under assumption of its existence (see references in the
Appendix).

3.2 Complement words and mirrored evolutions

Any finite or infinite binary word w can be transformed into its complement wc by re-coding:
1⇔ 0. Clearly

||w||+ ||wc|| = |w|+ |wc|. (11)

One can also interchange the role of symbols 0 and 1 in our evolution rule and carry out such
mirrored evolution starting from any finite initial word w1. Clearly, words created from an
arbitrary finite word w in our evolution scheme are complement words of words obtained in
mirrored evolution from wc.

Moreover, if an infinite word obtained in an evolution from an arbitrary finite cube-free word
has some limiting density p of entries 1, then its complement is also cube-free and must have the
density of entries 1 equal 1− p.

All of the above can also be illustrated by a following model. Let us assume that one has an
unlimited supply of domino tiles ◦ and starts with arranging some finite number of them into
an array with all tiles in vertical position (physicists may think of arrays made of spin vectors) and
continues the build-up of a chain with our inflation rules guided by symbols, say, in the bottom
row (with a dot on a tile considered as 1).

3.3 Two special evolutions starting from a single digit

Let us now pay more attention to the two simplest evolutions starting with words 0 or 1 created
according to our rules. These are:

initial word 0 evoloving into: 0; 1; 00; 10; 110; 11001; 00110100; . . . (12a)

initial word 1 evoloving into: 1|00; 10; 110; 11001; 00110100; . . . (12b)

Note that these two infinite chains of words coincide if one either drops the first word in Eq. (12a)
or precede the first word of Eq. (12b) by word 0 still consistent with the compression scheme for
Eq. (12b).

3.4 Kolakoski–Oldenburg sequence

Let us augment the sequence from Eq. (12b) with an additional initial digit equal 1, obtaining

110010110110010011010010110010010... (13)

and partition it after that into subsequent blocks of identical digits separated by colon signs

11:00:1:0:11:0:11:00:1:00:11:0:1:00:1:0:11:00:1:00:1:0 (14)
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Returning, for a while, to the {1,2} alphabet, one may write the sequence (13) as

221121221221121122121121221121121, . . . (15)

which can be compared to the sequence of its block lengths read from (15):

2211212212211211221211, . . . (16)

It suggests that both, generated in this way, infinite sequences (13) and (15) do coincide, that
is, they are invariant under subsequent block lengths transformation. There is one more binary
sequence of that type exhibiting this invariance property which can be obtained by augmenting
(13) by yet another initial element 0 to obtain:

0110010110110010011010010110010010, . . . (17)

which, in the variables of the {1, 2} alphabet reads as:

1221121221221121122121121221121121, . . . (18)

The interest in the sequence (18) was triggered by a note by Kolakoski [16], and it bears since
then his name. It could also be called the Oldenburger–Kolakoski (O.-K.) sequence since, as it
was noticed much later, it had been first considered in a broader context by Oldenburger [19].
A good source of information about the O.-K. sequence is the related Wikipedia page [25] and
Wolfram’s page [24].

For both versions of the O.-K. sequence (as indicated above, differences in some initial finite
fragment of the sequence do not matter in the infinite chain density consideration) Keane [15]
conjectured that the asymptotic density of digits 1 in this sequence is equal 1/2. Despite of
numerous, often quite sophisticated attempts, no one has succeeded in proving it and even a
(quite symbolic nowadays) money prize is assigned to the problem (see [22,24,25] and references
therein). However, brilliant efforts of several authors [5,8,17] have succeeded in producing quite
tight bounds around 1/2 for the presumed density.

A simple observation that distinct infinite chains of cube-free words can also be generated
from an arbitrary finite non-empty binary word via our inflationary evolution rule, lead us to a
conjecture that all such chains could all have the limiting chain density equal 1/2, including the
possibility of an asymptotic scaling law for word lengths and hence the existence of the limit for
subsequent word densities.

4 Numerical results

We began by checking first that infinite distinct chains created from few selected test initial words
may indeed have the expected behaviour. Results are presented in Figure 2 for several initial
words, as marked in the legend. For better readability we have restricted the number of inflation
steps in Figures 2 and 5 to 30 instead of 45 used in the simulations.
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Figure 2. Density of 1’s in concatenated words in inflation step k

Two of them start from initial cube-free words of length 6 (with the smallest and largest
possible initial densities for such cube-free words), two other begin, respectively, with the third
element of the classical O.-K. sequence and with an “illegal” initial word 1111, both having word
density equal one. The second word in the chain evolved from 1111 has length of 8 and is one of
the F8 which cannot be present in O.-K. sequences. All calculated chain densities, as expected,
exhibit large initial fluctuations but after about 20 evolution steps all approach closely 1/2 with
fluctuations smaller than 0.0002.
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Figure 3. Length of words |wk| generated in steps k

Rate of increase of subsequent word lengths after the k-th step of inflation is presented on
Figure 3 with used there doubly logarithmic scale and the same choice of initial words as in
Figure 2. It is evident that all of them follow quite well expected dependence |wk+1| ≈ 1.5 · |wk|.
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Figure 4 shows the same dependence as in Figure 3 but for concatenated words. Again, the same
fit to scaling law as in Figure 3 soon becomes very good in evolutions from longer initial words
and, understandably, is more sluggish for the truncated O.-K. sequence, as this is a chain with
slowest growth of finite chain lengths.
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Figure 4. Length of concatenated words |w1w2w3...| generated in steps k

Finally, the behaviour of density of 1’s in subsequent inflated, but not concatenated, particular
word is shown on Figure 5. As mentioned earlier in Section 3 the presence of asymptotic scaling
law with simple, rational factor 3/2 indeed forces their convergence to 1/2.
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Figure 5. Density of 1’s in inflation step k
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5 Constants characterizing sequences obtained
from an arbitrary finite cube-free word
in the deterministic expansion scheme

Any binary word σ1σ2 . . . σk . . . , σi ∈ {0, 1} can be associated with a binary fraction

0.σ1σ2 . . . σk . . . =
∑
k

σk × 2−k, k = 1, 2, . . . ,∞.

Binary fraction assigned to the variant of the Kolakowski sequence starting with 11 was calculated
as a decimal fraction starting from 0.79450 . . . up to 25000 digits, [22, 24, 25].

One can easily notice that infinite fractions formed from cube-free words are bounded from
above by a periodic binary fraction 0.11011011011 . . . (period 110, representing rational number
6/7, with periodic decimal expansion 0.85714 . . . . The corresponding lower bound is given
by another periodic binary fraction 0.00100100100 . . . (period 001, representing rational number
1/7, with periodic decimal expansion 0.14285. . . . Infinite fractions formed in our inflationary
scheme starting from any finite cube-free word must then be irrational numbers filling the interval
[1/7, 6/7]. The original Kolakoski sequence starting from 0 in {0, 1} alphabet (A000002 in OEIS)
is then represented by quoted above expansion, that is by 0.397247 . . . .

Just for illustration of the above remarks we calculated short fragments of the binary
expansions for words obtained in the inflationary procedure from relatively short initial cube-free
words. A sequence starting from 1: 100|10|110|11001| . . . (A000002 with its first two digits
removed), i.e., our sequence (12b) is represented by its decimal fraction 0.58898925712 . . . .
Four others starting from short cube-free words are: w1 = 001001, which gives 0.1452274 . . . ,
w1 = 110110 for which we got 0.8560665 . . . , w1 = 011011 which gives 0.4280303418 . . . and
w1 = 100100, with the fraction equal 0.5753654241 . . . . All those values are within the above
described limits.

6 Concluding remarks

Our original interest in the subject was triggered by its relations to variants of the Ising model [18]
and topics as interesting as quantum processors working with one-dimensional arrays of spin
states. We demonstrated that deterministic evolution scheme where each word contains intrinsic
instruction for the construction of its cube-free, inflated successor may indeed produce a wide
class of infinite binary sequences with well-mixed blocks 0, 1, 00 and 11, all of them having the
limiting density of 1 equal 1/2. The observed by other authors invariance of just two special,
cube-free Kolakoski-type sequences with respect to the “run length” transformation appears then
as a special feature, not critical for the limiting density equal 1/2 phenomenon. At the same time
alternating morphisms procedure (strictly speaking not of morphism type) originally proposed
for the Kolakoski sequence alone, could be still used, after minor modification, as equivalent to
our evolution determined by the preceding fragment of chain history. This and some other issues
contextually related to our work are discussed in the Appendix.
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We hope that it may revive interest in more detailed studies of limiting densities of sequences
which contain infinite chains of cube-free words, in particular those built according to the discussed
variant of inflation scheme, for which a kind of the generalized Keane’s conjecture can possibly
be proved and, at least, density bounds improved. Indeed, these bounds for the O.-K. sequence
itself are still of interest, as well as the search for most efficient algorithms (see again [5, 6, 8,
17, 22, 24, 25]. One should also add that some other, more complex types of self-reading and
inflationary sequences were also studied for years by Paun [20], and that some interesting results
about cube-free sequences were obtained in [11, 14]. Graphical representation of such chains of
cube-free words on square lattice are worth of interest. We intend to work on self-generating
graphical representations of our chains of words provided by tightly wound, decorated spiral
self-avoiding walks, originating at some point of the square lattice. One can also blur the difference
between deterministic or completely random evolutions by considering them as different ways of
decorating the trivial infinite chain 01010101 . . . (of obvious density 1/2) with inserts replacing
some 1 with blocks 11 and some 0 with blocks 00. Clearly, alternating insertions schemes of 00

and 11 will trivially leave the density of so created chains unchanged and equal 1/2. However,
as one can easily verify, this is not happening in the O.-K. sequence, and apparently not in any
of our sequences produced from an arbitrary word, what makes the studies of such possibly
asymptotically compensating infinite chains still of some interest.

A Appendix
A.1 Two limits

For any finite chain of finite words (not necessarily formed using the evolution rule described in
Section 3) and any real constant a one may start from an obvious inequality

|d(w1w2 . . . wM)| − a| ≤

M∑
k=1

|d(wk)− a| |wk|

M∑
k=1

|wk|
. (A.1)

It allows to conclude that the convergence of the sequence {d(wk)} to a implies the convergence
of the sequence {d(w1w2 . . . wM)} to the same limit. For this purpose let us select L < M

and separate right hand side of the inequality (A.1) into two sums: one with summation in the
numerator up to L and the other one with the summation there starting from L+ 1. The first sum
can be estimated from above by

L∑
k=1

|wk|

M∑
k=1

|wk|
as |d(wk)− 1| ≤ 1,

for all densities. On the other hand, for any ε > 0 there exists L(ε) such that the second
sum running in the numerator from L(ε) + 1 can be again estimated from above by, say, ε/2.
Simultaneously, for sufficiently large M > L(ε) the first sum could also be made smaller than
ε/2, what proves the claim.
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A.2 How deterministic inflation rules may simplify
the density questions for some infinite chains

Less trivial example is provided by the interestingly irregular famous Thue–Morse sequence
generated by morphism µ(0) = 01, µ(1) = 10 (see, e.g., [1] and an excellent summary of the
history of this sequence by the same authors [2]). With the above definition subsequent sequence
elements may be generated by iterations µn(0), leading to 011010011001011010010110 . . ..
Dropping its first two digits and partitioning infinite remainder into words of ever increasing even
lengths, one writes such infinite sequence as a chain of words 10; 1001; 10010110; 1001011010 . . .,
where each word can be considered as generating its successor letter by letter in a simple
deterministic inflation rule 1 → 10, 0 → 01. All words in the chain have then a constant density
1/2 and so such must be the infinite chain density.

A.3 More on alternating morphisms scheme

The (13) version of the O.-K. sequence from Section 3 can also be generated by an equivalent
ingenious evolution rule originally proposed in [9] just for the truncated version of the O.-K.
sequence written in the {1, 2} alphabet as 22112122122 . . . (13) of Section 3. We will briefly
describe it by returning to {0, 1} alphabet. One introduces, first, an infinite auxiliary row of
labelling indices for sequence elements: 1010101010101010 . . . and declares the following
transformation rules:

µ0;µ0(0) = 0, µ0(1) = 00 (A.2)

for digits placed in positions 0 and

µ1;µ1(0) = 1, µ1(1) = 11 (A.3)

for digits in positions 1.
One then places digit 1 at the position 1 and claims as it was done in [9] that this is a special

seed of the sequence generating word 11 according to (A.2), but still occupying positions 1 and
0 in to be constructed chain. New element 1 in the position 0 then generates a new word: two
zeroes occupying positions labelled 1 and 0. 0 at position 1 then generates 1 to be placed at
the first available unoccupied position marked 1 and remaining 0 at position 0 generates 0 to be
placed at position 0. Created in this way word 10 then determines entries to placed at subsequent
unoccupied positions forming there word 110, which in turn generates word 11001, etc.

The process can be illustrated by plotting a line of indices with consecutive words placed
underneath:

1 0 1 0 1 0 1 0 . . .
1 1; 0 0; 1 1 0; 1 1 0 0 0 1; . . .

The introduction of the seed word was perhaps motivated by the intriguing invariance property of
the resulting entire sequence under run length transformation.

Later on, such interest in the sequences coinciding with their run lengths led to sophisticated
generalizations for run lengths not necessarily equal to 1 and 2 but operating with any positive
integers r and s and alphabet {r, s} (see [21] for a review and new results).
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Alternating evolution rules (A.2) and (A.3) are often called alternating morphisms though
cannot be reduced to a pure morphism (see Exercise 21 in Chapter 10 of [1]). They can also be
used instead of our simple inflation scheme starting from an arbitrary, already cube-free initial
word w1 by using a simple labelling convention of the subsequent digits of the word w2. Namely,
if the word w1 ends with the block of 1’s then the first digit of to be created word w2 is labelled
with 0 and alternating labels have to be assigned backwards to all digits of w1 as well as to all
to be created digits at the subsequent steps. Similarly, if the word w1 ends with the block of 0

then the first digit of to be created word w2 should be labelled with 1 and alternating labels are
assigned accordingly to all other positions. In both cases, new position dependent evolution rules
are used to evolve w1 into w2, w2 into w3 etc. The key fact in both equivalent methods is the
requirement that the created blocks of 1 and 0 must alternate.

A.4 Dekking’s rules

Some years before the paper [9], Dekking [12] had observed that the O.-K. sequence starting
from 22 can also be generated by a special transformation rule transforming two-letter words into
words of length 2, 3 or 4. In terms of the {0, 1} alphabet these transformations are:

δ(00) = 10, δ(1) = 1, δ(10) = 110, δ(11) = 1100. (A.4)

Dekking also indicated that the rule has to be amended by an additional convention of evolution
of words of odd length created in the process. Indeed, starting from 11 as a seed, we obtain
1100|10|110|. The last word formed in this process has an odd length and an additional convention
says that in all such cases one should disregard last letter of such word and continue expansion
according to the preceding it two-letter word.

This will result in 1100|10|110|1100|110010|10010110| . . . ,where again the last created word
has odd length.

Returning to the original {1,2} alphabet we obtain 2211|21|221|2211|221121|22112122| . . . ,
which appears to coincide with the sequence given in Equations (13). Still, one may worry here
about formal equivalence proof of both evolution procedures.

A.5 Fibonacci words

These are words produced by morphisms: ϕ : ϕ(0) − 1, ϕ(1) − 10 and its re-coded variant
ϕ̄ : ϕ̄(0) = 0, ϕ̄(0) = 01 leading to mirroring each other sequences of iterates: ϕ(n)(1) and
ϕ̄(n)(0): 101101011011010110 . . . and 010010100100101001 . . ..

Dropping first two elements of the first of them one can view the rest of it as obtained in the
inflation scheme 1; 10; 101; 10110; 10110101; . . . where subsequent digits of each next word are
produced by replacing in the preceding word, digit after digit: 0 by 1 and 1 by 10. It can also be
viewed as a way of extending walks on the graph 11−0−1 which are started from vertex 1. Quite
similarly, one can modify the second sequence above by dropping its first two digits and start the
inflation scheme 0; 01; 010; 01001; 01001; 01001010; . . .. First of the sequences never contains
squares 00 as sub-words, the mirror sequence does not contain squares 11. It is well known (see,
e.g., [1]) that these sequences have infinite chain densities equal, respectively, (3−

√
5)/2 < 2/3

and (
√

5− 1)/2 > 1/3.
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Two remarks appear of some significance in this context:
1) “Thinning” of the O.-K. sequence (again without its first two elements) by replacing all 11

squares there by 1 or “compacting” it by replacing all its 00 squares by 0 does not produce
Fibonacci words.

2) It could be interesting, however, to apply the above simple inflation schemes to longer
initial words without squares of one type and not showing up as any of the words in the
Fibonacci chains.

Example: 110101 : 1010110110 : 1011011010110101 : . . . , etc.

Question: Do they all have densities coinciding with that for the “denser” Fibonacci word?
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