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1 Introduction and Preliminaries

It is a well known fact that Fibonacci numbers have many uses in applied sciences and real life.
Many examples of the Fibonacci numbers or sequence, which lead to the golden ratio, such
as rabbit problems, growth of the branches and leaves of some plants, the family tree of bees,
etc., can be seen in the literature (see, for instance, [7, 8, 11]). There are also many interesting
mathematical properties related to the Fibonacci sequence, the Lucas sequence and golden ratio
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(see, for instance, [7, 9, 11, 12]). Noteworthy, many of these features are used in mathematical
modeling of some real life problems.

Now, we will recall some terminology and results to be used throughout the rest of the work.
The Fibonacci sequence {Fn} is defined by the recurrence relation Fn+1 = Fn + Fn−1 for

any integer n ≥ 1 together with the initial conditions F0 = 0 and F1 = 1. The elements of
this sequence are called Fibonacci numbers [7]. There are several definitions of sequences called
generalized Fibonacci sequences in the literature (see, for instance, [4, 5, 7, 10]). However, we
will proceed based on the following definition.

The generalized Fibonacci sequence {Un} is defined by the recurrence relation
Un+1 = kUn + tUn−1 for any integer n ≥ 1 and the initial conditions U0 = 0, U1 = 1 with k and
t being nonzero real numbers [10]. The elements of the sequence {Un} are called generalized
Fibonacci numbers.

Note that the Fibonacci sequence {Fn} is a special version of the generalized Fibonacci
sequence considered here with k = t = 1.

The roots of the equation x2 − kx − t = 0 are αk,t =
k +
√
k2 + 4t

2
and βk,t =

k −
√
k2 + 4t

2
.

The relation

Un =
αn
k,t − βn

k,t

αk,t − βk,t
is known as Binet’s formula with k2 + 4t > 0 and n ∈ Z. In addition, for n ∈ Z, the identities

αn
k,t = αk,tUn + tUn−1 and βn

k,t = βk,tUn + tUn−1 (1)

hold. Also, negatively indexed generalized Fibonacci numbers are given by the relation
U−n =

−Un

(−t)n
[10].

It is well known that there are some relations between Fibonacci numbers or generalized
Fibonacci numbers and matrices of dimension 2 × 2 [1–3, 7, 10]. In the study [6], a procedure

that gives some relations between 3 × 3 dimensional matrices with eigenvalues α =
1 +
√
5

2
,

β =
1−
√
5

2
, and 0, and Fibonacci numbers was introduced.

Inspired by the work [6], in this study, a similar procedure to that in [6] giving some relations

between 3×3 dimensional matrices having the eigenvalues αk,t =
k+
√
k2 + 4t

2
, βk,t =

k−
√
k2 + 4t

2
,

and any real number r, and generalized Fibonacci numbers is presented.

2 Main result

Let the matrix

A =

 a b c

d e f

g h i


be any matrix having the eigenvalues λ1 = αk,t, λ2 = βk,t, and λ3 = r, where r is any real
number. It is obvious that the necessary and sufficient condition for the eigenvalues of A to be
λ1 = αk,t, λ2 = βk,t and λ3 = r is that the equalities
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a+ e+ i = r + k

−ae− ai− ei+ gc+ hf + bd = −kr + t (2)

aei+ dhc+ gbf − gce− hfa− bdi = −tr

are satisfied. It can be easily proved that the conditions

k2 + 4t > 0

r2 − kr − t 6= 0
(3)

must hold in order for the eigenvalues αk,t, βk,t and r to be mutually different.
From now on, we will deal with 3 × 3 dimensional matrices that provide (2) and (3), that is,

3× 3 dimensional matrices having the mutually different eigenvalues λ1 = αk,t, λ2 = βk,t, and r.
LetA be a matrix satisfying all the conditions mentioned above. Moreover, let the eigenvectors

corresponding to the eigenvalues αk,t, βk,t and λ3 = r of the matrix A be x = (x1, x2, x3),
y = (y1, y2, y3), and z = (z1, z2, z3), respectively.

Since all eigenvalues are mutually different, the matrix A provides the equality

An = P

 λn1 0 0

0 λn2 0

0 0 rn

P−1

for all positive integers n, where P is a matrix having the columns x, y, and z, respectively.
Taking (1) into account, we get, without loss of generality,

An = P

 Unλ1 + tUn−1 0 0

0 Unλ2 + tUn−1 0

0 0 rn

P−1

= P (Un

 λ1 0 0

0 λ2 0

0 0 r

+tUn−1

 1 0 0

0 1 0

0 0 1

+

 0 0 0

0 0 0

0 0 rn − rUn − tUn−1

)P−1

or equivalently,
An = UnA+ tUn−1I + (rn − rUn − tUn−1)D, (4)

where D = P

 0 0 0

0 0 0

0 0 1

P−1. Taking the definition of P into consideration, we obtain

D =
1

det(P )

 z1(x2y3 − y2x3) z1(y1x3 − x1y3) z1(x1y2 − y1x2)
z2(x2y3 − y2x3) z2(y1x3 − x1y3) z2(x1y2 − y1x2)
z3(x2y3 − y2x3) z3(y1x3 − x1y3) z3(x1y2 − y1x2)

 .

Here it is obvious that

det(P ) = z1(x2y3 − y2x3) + z2(y1x3 − x1y3) + z3(x1y2 − y1x2).
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The system (2) has either no solution or infinitely many solutions. Since our main aim is
to present a procedure to find some specific solutions to (2), we will only proceed under some
certain conditions instead of characterizing all solutions.

First, let us assume that

x2y3 − y2x3 = y1x3 − x1y3 = x1y2 − y1x2 (5)

and
z1 + z2 + z3 = j 6= 0. (6)

In this case, we have det(P ) = j(x2y3 − y2x3) and D = 1
j

 z1 z1 z1
z2 z2 z2
z3 z3 z3

. Thus, we need to

find a matrix A satisfying the equalities (2), (5), and (6), and the inequalities (3) simultaneously.
Now let us say that, without loss of generality, x2y3 − y2x3 = y1x3 − x1y3 = x1y2 − y1x2 = s.
Note that s 6= 0 since det(P ) 6= 0. Also, since the cross product vector x× y is perpendicular to
both the vectors x and y, the equalities

x1 + x2 + x3 = y1 + y2 + y3 = 0 (7)

are obtained.
Thus, (5) leads to (7). It is easily seen that the converse of this conclusion is also true. Thus,

(5) and (7) are equivalent. From now on, we will consider (7) instead of (5) for simplicity.
Next, let us proceed as follows. According to the hypotheses, we have the systems

Ax = λ1x (8)

and
Ay = λ2y. (9)

Taking (7) into account, from (8) and (9), we get

(a+ d+ g − c− f − i)x1 + (b+ e+ h− c− f − i)x2 = 0

and
(a+ d+ g − c− f − i)y1 + (b+ e+ h− c− f − i)y2 = 0,

respectively. For the sake of simplicity, putting a+d+g−c−f−i = c1 and b+e+h−c−f−i = c2,

the system

(
x1 x2
y1 y2

)(
c1
c2

)
=

(
0

0

)
is obtained. Hence, it is seen that c1 = c2 = 0; that is

a+ d+ g − c− f − i = 0 and b+ e+ h− c− f − i = 0. So, we get

a+ d+ g = c+ f + i = b+ e+ h (10)

under the hypotheses. Meanwhile, note that we have also the system

Az = rz. (11)
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If we consider (10), then from the systems (8) and (9), we obtain

(a+ d+ g)(x1 + x2 + x3) = λ1(x1 + x2 + x3),

(a+ d+ g)(y1 + y2 + y3) = λ2(y1 + y2 + y3),
(12)

respectively. And from the equalities (12), we get x1 + x2 + x3 = y1 + y2 + y3 = 0. Otherwise,
the following contradictions are obtained in each case: If x1 + x2 + x3 6= 0 and y1 + y2 + y3 6= 0,
then the equalities (12) lead to the contradiction λ1 = λ2. Taking (6) and (10) into account, if
x1 + x2 + x3 6= 0 and y1 + y2 + y3 = 0, or x1 + x2 + x3 = 0 and y1 + y2 + y3 6= 0, then the
equalities (12) lead to the contradictions λ1 = r, or λ2 = r, respectively. Thus, it is obtained

x1 + x2 + x3 = y1 + y2 + y3 = 0

under the hypotheses.
Now, taking the equalities (6) and (10) into account, we get a+d+g = r from (11). Therefore,

it is now necessary to determine the matrix A such that a+ d+ g = r under existing restrictions.
So, under all these hypotheses, we have to find matrices having the from

A =

 a b c

d e f

r − a− d r − b− e r − c− f

 . (13)

If this matrix is first substituted into (11) and then the necessary elementary operations are
performed, then it is obtained the system

(a− r)z1 + bz2 = −cz3
dz1 + (e− r)z2 = −fz3.

(14)

Now, we will proceed as follows. Let us assume that (a − r)(e − r) − bd 6= 0. In this case,
the general solutions of system (14) (or, equivalently (11)) are obtained as

z = u(− fb− (e− r)c
bd− (a− r)(e− r)

, − cd− (a− r)f
bd− (a− r)(e− r)

, 1)

with u 6= 0. Hence, taking (6) into account, we get

u(− fb− (e− r)c
bd− (a− r)(e− r)

− cd− (a− r)f
bd− (a− r)(e− r)

+ 1) = j.

If u is chosen as u = j, then it is obtained that fb− (e− r)c+ cd− (a− r)f = 0. Thus, we have
included the additional conditions

f(b− a+ r) + c(d− e+ r) = 0 and bd− (a− r)(e− r) 6= 0. (15)

Next, let us reconsider the equalities (2) and (3) under all hypotheses so far. Considering (13) and
the first equality in (15), it seen that the equations (2) turn into the equations

a− c− f + e = k,

−ae− ar − er + 2rc+ 2rf + bd = −kr + t,

fr + cr − ae+ bd = t,
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or equivalently, the equations

a− c− f + e = k

fr + cr − ae+ bd = t.

Thus, we must have the following:

f(b− a+ r) + c(d− e+ r) = 0,

bd− (a− r)(e− r) 6= 0,

a− c− f + e = k,

fr + cr − ae+ bd = t.

(16)

If the conditions in (3) are added to those in (16), then we obtain the conditions that will satisfy
all hypotheses assumed so far as follows;

k2 + 4t > 0,

r2 − kr − t 6= 0,

f(b− a+ r) + c(d− e+ r) = 0,

bd− (a− r)(e− r) 6= 0,

a− c− f + e = k,

fr + cr − ae+ bd = t,

or equivalently,

k2 + 4t > 0,

r2 − kr − t 6= 0,

f(b− a+ r) + c(d− e+ r) = 0,

a− c− f + e = k,

fr + cr − ae+ bd = t.

(17)

Consequently, we have shown that any matrix A in the form (13) satisfying all the conditions in
(17) has eigenvalues αk,t, βk,t, and r, which are mutually different.

The relation given by (4) between generalized Fibonacci numbers and any positive integer
power of any matrix A satisfying all the conditions in (17) will, generally, have a roughness. In
fact, our main aim is to present a procedure for the problem considered. So, we want to close the
study by giving a result under a specific choice in order to obtain a descriptive result related to
the procedure presented to the problem handled in the study.

For example, let us choose c = f = 0. In this case, the equalities (17) turn into the equalities

k2 + 4t > 0,

r2 − kr − t 6= 0,

a+ e = k,

−ae+ bd = t.
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Moreover, the matrix A of the form (13) is also obtained as

A =


a b 0

ak − a2 + t

b
k − a 0

br − ab− ak + a2 − t
b

r + a− b− k r

 .

Taking the equality (4) into account with

D =
1

det(P )

 z1 z1 z1
z2 z2 z2
z3 z3 z3

 =

 0 0 0

0 0 0

1 1 1

 ,

it is obtained that

An = Un


a b 0

ak − a2 + t

b
k − a 0

br − ab− ak + a2 − t

b
r + a− b− k r

+ tUn−1I + (rn − rUn − tUn−1)D,

or equivalently,

An =


aUn + tUn−1 bUn 0

ak − a2 + t

b
Un (k − a)Un + tUn−1 0

−ab− ak + a2 − t
b

Un − tUn−1 + rn (a− b− k)Un − tUn−1 + rn rn


for all positive integers n.

Thus, the following result has been proved.

Theorem 2.1. The eigenvalues of the matrix

A =


a b 0

ak − a2 + t

b
k − a 0

br − ab− ak + a2 − t
b

r + a− b− k r


are αk,t, βk,t, and r, where a, b, k, and t are any real numbers provided that b, k, and t are not
zero, k2 + 4t > 0, and r2 − kr − t 6= 0. Moreover,

An =


aUn + tUn−1 bUn 0

ak − a2 + t

b
Un (k − a)Un + tUn−1 0

−ab− ak + a2 − t
b

Un − tUn−1 + rn (a− b− k)Un − tUn−1 + rn rn


for all positive integers n.
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If k and t in the Theorem 2.1 are chosen as k = t = 1, then the following result is obtained.

Corollary 2.1.1. The eigenvalues of the matrix

A =


a b 0

a− a2 + 1

b
1− a 0

br − ab− a+ a2 − 1

b
r + a− b− 1 r


are α = 1+

√
5

2
, β = 1−

√
5

2
, and r, where a, b, r are any real numbers with b 6= 0 and r2−r−1 6= 0.

Moreover,

An =


aFn + Fn−1 bFn 0

a− a2 + 1

b
Fn (1− a)Fn + Fn−1 0

−ab− a+ a2 − 1

b
Fn − Fn−1 + rn (a− b− 1)Fn − Fn−1 + rn rn


for all positive integers n.

Now, we give some numerical examples of matrices whose entries are associated with
generalized Fibonacci numbers.

Example 2.2. Let a = 1, b = −1, r = 2, k = 1, and t = 3. By Theorem 2.1, the matrix A
becomes as in the following:

A =

 1 −1 0

−3 0 0

4 3 2

 .

Suppose that n = 2. So, by Theorem 2.1, we get

A2 =

 U2 + 3U1 −U2 0

−3U2 3U1 0

2U2 − 3U1 + 4 U2 − 3U1 + 4 4

 =

 4 −1 0

−3 3 0

3 2 4

 .

Remark. Noteworthy that Theorem 2.1 is also true for all integers n in the case r 6= 0. For
example, if a = 2, b = 1, r = 1, and k = t = 1, then

A =

 2 1 0

−1 −1 0

0 1 1


and

An =

 Fn+2 Fn 0

−Fn −Fn−2 0

−Fn+1 + 1 −Fn−1 + 1 1


for all integers n.
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Example 2.3. Let the matrixA be as in Example 2.2. Now, suppose that n = −3. So, by Theorem
2.1, we get

A−3 =


U−3 + 3U−4 −U−3 0

−3U−3 3U−4 0

2U−3 − 3U−4 + 2−3 U−3 − 3U−4 + 2−3 2−3

 =


−1
9

−4
27

0

−4
9

−7
27

0

49
72

115
216

1
8

 .

3 Conclusion

It has been given here a procedure to find some 3 × 3 dimensional matrices in the special case
by starting from the problem considered in the general situation. The reason for the fact that the
general situation has a roughness is that a system of linear equations has either trivial solution or
infinitely many solutions. As a result, we especially want to note again that the main point of this
work is to present a procedure to the problem considered in the work, or similar ones.

Also, note that the matrices in this work can also be used to develop algorithms that generate
generalized Fibonacci numbers (see for instance, [13]). However, this can be considered as a new
problem in itself.
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