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1 Introduction

H. S. Vandiver (1882–1973) was a famous mathematician, best known for his work on Fermat’s
last theorem (he won the AMS Cole Prize in 1931 essentially for his activity in this field), but he
wrote many papers also on cyclotomic and Abelian fields, Bernoulli numbers, the reciprocity
laws, finite fields, factorization techniques, semigroups, semirings, and algebras. See D. H.
Lehmer [2] for Vandiver’s interesting life and activity.

In 1904, Vandiver published a problem (see [6]), which states that for any odd positive integers
n > 1, one has ∏

d|n

(d+ 1) < 2n. (1)

His proof was based on some properties of Euler’s totient function. In what follows, we shall
call

V (n) =
∏
d|n

(d+ 1) (2)

as Vandiver’s arithmetic function. We shall obtain some properties of function V (n). Among
others, it is shown that (1) holds also for even integers n, with a few exceptions (n 6= 2, 4, 6, 8, 12).
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Arithmetic functions of type

F (n) =
∏
d|n

f(d) (3)

for f(n) = n or f(n) = ϕ(n), f(n) = σ(n) have been considered by the author, e.g. in
papers [3, 5].

The main difference between these functions an Vandiver’s one is that in (3) all functions (as
n, σ(n), ϕ(n), etc.) were multiplicative (i.e., satisfying f(mn) = f(m)f(n) for (m,n) = 1),
while V (n) is clearly not. Therefore, one needs different techniques to handle this function.

Vandiver used the idea that, by Euler’s divisibility theorem, one has 2ϕ(d) − 1 divisible by d
(if d is odd), and particularly

2ϕ(d) ≥ d+ 1. (4)

The inequality (4) may be combined with Gauss’ identity∑
d|n

ϕ(d) = n.

It is easy to show that at least one inequality in (4) is strict, so in (1) there is a strict inequality.
We will use another argument to obtain stronger relations.

2 Main results

Theorem 1. For all n ≥ 1 we have the double inequality

(
√
n+ 1)d(n) ≤ V (n) ≤

(
σ(n)

d(n)
+ 1

)d(n)
, (5)

where d(n) and σ(n) denote the number, respectively, the sum of divisors of n.

Proof. Let d1, d2, . . . , dr denote the distinct divisors of n (r = d(n)). By the arithmetic mean—
geometric mean inequality

(x1x2 . . . xr)
1/r ≤ x1 + x2 + · · ·+ xr

r
, (6)

applied to xi = di + 1 (i = 1, 2, . . . , r), we get

(V (n))1/d(n) ≤ d1 + · · ·+ dr + r

r
=
σ(n)

d(n)
+ 1,

so the right-hand side of (5) follows. Since all divisors di are distinct, there is equality only for
r = 1, i.e., n = 1.

For the left-hand side of (5) we shall use the idea that
∏

d|n(d + 1) =
∏

d|n(
n
d
+ 1) = V (n),

implying

(V (n))2 =
∏
d|n

(d+ 1)(
n

d
+ 1). (7)
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On the other hand, as (d + 1)(n
d
+ 1) = n + 1 + (d + n

d
) ≥ n + 1 + 2

√
n = (

√
n + 1)2 by

inequality (6) for r = 2, x1 = d, x2 =
n
d
. Since

∏
d|n(
√
n+ 1)2) = (

√
n+ 1)2d(n), by relation (7)

we get the desired result.

Remark 1. Another method of proving the left-hand side of (5) is based on the following Minkowski
inequality (see, e.g. [1]):

r
√
(a1 + b1) · · · (ar + br) ≥ r

√
a1 · · · ar + r

√
b1 · · · br, (8)

where ai, bi (i = 1, . . . , r) are positive real numbers. Apply (8) for bi = 1, ai = di, and the result
follows by the well-known formula d1 · · · dr = nr/2.

Theorem 2. For all n > 1 odd, and for all n ≥ 14 even, inequality (1) is true.

Proof. We shall use the right-hand side of (5), and the known inequality (see, e.g., [4])
σ(n)

d(n)
≤ n+ 1

2
. (9)

Now, by (5) and (9) we have to study the inequality(
n+ 3

2

)d(n)
< 2n. (10)

Since d(n) < 2
√
n (see, e.g. [4]) for all n, by taking logarithms in (10), it will be sufficient to

consider
√
n log 2 > 2 log

(
n+ 3

2

)
. (11)

Since the function f(x) =
√
x log 2 − 2 log

(
x+3
2

)
has a derivative f ′(x) = (x+ 3) log 2–4

√
x

2(x+ 3)
√
x

,

the function f will be strictly increasing if g(x) = (x+ 3) log 2− 4
√
x > 0.

As g′(x) = log 2− 2√
x
> 0 iff x > ( 2

log 2
)2 = 8.32 . . . , g is strictly increasing for such values

of x. As g(36) = 39 log 2− 24 > 0, g is strictly increasing for x ≥ 36.

However, the values of f are negative for such low values of x.
But f(169) = 13 log 2−2 log 86 = 0.102 . . . > 0, so inequality (11) is valid for any n ≥ 169.

Now, a computer search shows that for 2 ≤ n ≤ 168 only n = 2, 4, 6, 8 and 12 are exceptions,
and this proves the theorem.

Remark 2. The above computations can be made somewhat easier by remarking that the upper
bound in (5) may be replaced by:

V (n) ≤
(√

2(n+ 1)
)d(n)

. (12)

For the proof of (12) we will use relation (7) and the fact that

d+
n

d
≤ n+ 1. (13)

Inequality (13) holds true, as may be written equivalently as (d − 1)(d − n) ≤ 0, which is
valid, as d ≥ 1 and d ≤ n.

Therefore, by (7) we get
(V (n))2 ≤

∏
d|n

2(n+ 1)

and this implies (12).
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Now, inequality (√
2(n+ 1)

)d(n)
< 2n (14)

by d(n) ≤ 2
√
n, is implied by the weaker inequality

(2(n+ 1))2
√
n < 22n,

or

2
√
n−1 > n+ 1. (15)

Now, it is easy to see that the real-variable inequality

2x−1 > x2 + 1 (16)

holds true for any x ≥ 7 (by the graphs of functions f1(x) = 2x−1 and f2(x) = x2 + 1); so
(15) will be valid for any n ≥ 49.

Therefore, it is sufficient to verify (1) for 2 ≤ n ≤ 48, and this requires fewer computations
than the above case.

A number n has been called in [5] as multiplicatively f -perfect if it satisfies∏
d|n

f(d) = (f(n))2. (17)

for f(n) = n, along with generalizations, see [3]; while for example f(n) = σ(n), see [5]. In
these cases there are infinitely many solutions.

A similar equation to (17) is ∏
d|n

f(d) = 2f(n). (18)

Theorem 3. When f(n) = n + 1, equation (17) has no solutions. All solutions of (18) are the
prime numbers.

Proof. Equation (17) in the case f(n) = n+ 1 may be written as

V (n) = (n+ 1)2. (19)

Now, by the left-hand side inequality of Theorem 1, by (19) we can write

(
√
n+ 1)d(n) ≤ (n+ 1)2. (20)

For d(n) ≥ 4 we get (
√
n+ 1)4 ≤ (n+ 1)2, or (

√
n+ 1)2 ≤ n+ 1, which is a contradiction.

Therefore, one must have 2 ≤ d(n) ≤ 3.

a) d(n) = 2. Then n is a prime, n = p, so V (n) = 2(p+1) = (p+1)2 iff p2 = 1, contradiction.

b) d(n) = 3. Then n = p2 (p prime); in which case V (n) = 2(p + 1)(p2 + 1) = (p2 + 1)2 iff
2(p+ 1) = p2 + 1, i.e., p2 − 2p+ 1 = 2 or (p− 1)2 = 2; impossible as

√
2 is irrational.
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Thus, the equation is not solvable for n > 1. Since V (1) = 2 6= 22, n = 1 is not a solution
either.

Related to equation (18), remark that as 1 and n are distinct divisors of n > 1,

V (n) ≥ 2(n+ 1) for any n > 1. (21)

There is equality in (21) only when n has only these two divisors; i.e., if n is prime. Thus,
equation (18) has only these solutions.

A generalization of (21) is the following inequality

V (kn) ≥ (kn+ 1).V (k) for k ≥ 1, n ≥ 1. (21′)

For k = 1, (21′) reduces to (21).
Let k ≥ 2. Then remark that any divisor d of k is also a divisor of kn, so V (kn) is a multiple

of V (k). There is at least one divisor of kn, which is not a divisor of k (for k ≥ 2), namely kn;
so by the definition of the function V , (21′) follows.

There is equality when kn has all divisors as the divisors of k, and nk, which is possible only
if k = 1 and n prime.

Remark 3. The equation

V (n) = (n+ 1)d(n) (22)

has a single solution, namely n = 1.
Indeed, by inequality (12) we get n + 1 ≤

√
2(n+ 1), implying n ≤ 1, i.e., n = 1. Since

V (1) = 2 = 2d(1), this is indeed a solution.

Now we prove an asymptotic result:

Theorem 4. One has

log V (n)

d(n)
∼ 1

2
log n as n→∞. (23)

Proof. By the left-hand side of (5) and relation (12) we get

d(n) log(
√
n+ 1) ≤ log V (n) ≤ d(n) log

√
2(n+ 1). (24)

It is easy to see that log(
√
n + 1) ∼ 1

2
log n, and log

√
2(n+ 1) ∼ 1

2
log n, so by (24) the result

follows.

Corollary 1.

lim
n→∞

sup log log V (n).
log log n

log n
= log 2. (24′)

Proof. This follows by (23) and the well-known result of S. Wiegert (see, e.g. [4])

lim
n→∞

sup
log d(n). log log n

log n
= log 2. (25)

This completes the proof.
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Remark 4. As, e.g., V (p) = 2(p+ 1) for primes p, one has clearly

lim
n→∞

inf log log V (n).
log log n

log n
= 0. (26)

This implies also, by inequality (21), that:

lim
n→∞

inf
V (n)

n
= 2. (26′)

An arithmetical property of V (n) is contained in:

Theorem 5. V (n) is a power of 2 only if n = 1 or n is a Mersenne prime.

Proof. One has V (1) = 2, while for n > 1 clearly V (n) is divisible by n + 1, so if n is an even
number, then V (n) can have odd divisors, as well. When V (n) = 2m, by (2) all divisors d > 1

must be of the form d = 2a − 1 for some integer a > 1. Remark that a number of the form
4m + 1 cannot be written as 2a − 1. Indeed, this would imply 4m = 2a − 2 = 2(2a−1 − 1),
which is not divisible by 4. Therefore, in the prime factorization of n, we cannot have primes
≡ 1 (mod 4). If there are at least two prime divisors p, q ≡ −1 (mod 4), then p.q ≡ 1 (mod 4)

is also a divisor of n, so we get a contradiction, as above. Thus, n = pα with p ≡ −1 (mod 4).
For α ≥ 2, p2 ≡ 1 (mod 4) is a divisor of n, so this is impossible. Therefore α = 1, when n = p

and V (n) = 2(p+ 1) = 2m iff p = 2m−1 − 1 is prime, i.e., a Mersenne prime.

An improvement of inequality (21) is contained in the following theorem.

Theorem 6. For any n > 1 one has

V (n) ≥ 2σ(n) ≥ 2(n+ 1). (27)

Proof. When n > 1 is prime, clearly V (n) = 2σ(n) = 2(n + 1). Suppose that n is composite.
Then, by inequality (9) one has 2σ(n) ≤ (n + 1)d(n) (in fact, the inequality is strict, as there is
equality in (9) only for n prime). Therefore, it is sufficient to prove

(n+ 1)d(n) < (
√
n+ 1)d(n), (28)

in view of the left-hand side of (5). Put d(n) = m ≥ 3 (as n is composite). Then we will prove
by induction upon m the inequality

(n+ 1)m < (
√
n+ 1)m. (29)

For m = 3 one has (
√
n+ 1)3 = n

√
n+ 3n+ 3

√
n+ 1 > 3n+ 3 is trivial.

Now, assuming (29) for m, one has

(
√
n+ 1)m+1 = (

√
n+ 1)m.(

√
n+ 1) > (n+ 1)m(

√
n+ 1) > (n+ 1)(m+ 1)

iff m(
√
n+ 1) > m+ 1,

which holds true as m
√
n > m. Therefore, (28) is true for any composite n, and this finishes the

proof.
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Another proof can be given using the definitions of V (n) and σ(n):∏
d|n

(d+ 1) ≥ 2
∑
d|n

d. (30)

Let d1, d2, . . . , dr be the distinct divisors of n > 1. Then, selecting xi = di+1 (i =̇ 1, r − 1),

inequality (30) becomes:

(x1 + 1) · · · (xr−1 + 1) ≥ x1 + · · ·+ xr−1 + 1, r ≥ 2. (31)

This inequality is well-known, and can be proved e.g. by induction upon r. Since there is
equality only for r = 2, the equality case in (30) will be only for n being a prime.

The second proof suggests the following:

Remark 5. All solutions to the equation V (n) = 2σ(n) are n = 1 and n = prime. This follows
by the proof of Theorem 6 and the fact that V (1) = 2 and σ(1) = 1.

Theorem 7. When n is composite, one has

V (n) ≥ 2.(σ(n) + T (n)), (32)

where T (n) =
∏

d|n d = nd(n)/2 denotes the product of the divisors of n.

Proof. Let d2, . . . , dr be the divisors > 1 of n, and put xi = di+1, as in the second proof of
Theorem 6. Then (32) becomes

(xr + 1) · · · (xs + 1) ≥ x1 · · ·xs + x1 + · · ·+ xs + 1, (33)

where s = r − 1. As n is composite, r ≥ 3, so s ≥ 2. For s = 2 there is equality in (33), while
for s = 3 there is strict inequality, as

(x1 + 1)(x2 + 1)(x3 + 1) = x1x2x3 + x1x2 + x1x3 + x2x3 + x1 + x2 + x3 + 1

> x1x2x3 + x1 + x2 + x3 + 1.

By induction upon s, it follows that (33) holds true with strict inequality for s ≥ 3.

Remark 6. All solutions to the equation

V (n) = 2.(σ(n) + T (n)) (34)

are n = p2, where p ≥ 2 is a prime.
Indeed, n prime is not a soluton, while for n composite, by the proof of Theorem 7 one can

have equality only when s = 2, i.e., n has r = 3 distinct divisors. This is true only for n = p2,
having divisors 1, p, p2.

Remark 7. Since it is well-known (see, e.g. [4]) that σ(n) < n
√
n = n3/2 for n ≥ 3, and since

T (n) = nd(n)/2 ≥ n3/2 for composite n, we get T (n) > σ(n) for composite n, so (32) implies

V (n) > 4σ(n) for all composite n. (35)
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Theorem 8. For infinitely many n we have

V (n+ 1) > V (n), (36)

while for infinitely many m we have

V (m+ 1) < V (m). (37)

Proof. Inequality (36) is valid for any n = p being prime. Indeed, by relation (21) one can write
V (p + 1) > 2(p + 2) > 2(p + 1) = V (p). On the other hand, remark that if p ≥ 3, then p − 1

is divisible by 1, 2 and p − 1, so V (p − 1) ≥ 6p > 2(p + 1) = V (p), i.e., V (p − 1) > V (p) for
p ≥ 3. By letting m = p− 1, inequality (37) follows.

Conjecture 1. As we have seen above, V (p+1) > V (p) for primes p ≥ 2 and V (p− 1) > V (p)

for p ≥ 3. The inequality

V (p− 1) < V (p+ 1) (38)

is not always true (e.g., for p = 31, 37, etc.). We conjecture that (38) holds true for infinitely
many primes p. Also, the inequality

V (q − 1) > V (q + 1) (39)

holds true for infinitely many primes q.

Theorem 9.

lim
n→∞

V (2n)

2n(n−1)/2
= 2.ι, (40)

where ι ∈ (2, e) is a constant.

Proof. As all divisors of 2n are 1, 2, 22, . . . , 2n, we get

V (2n) = 2.(2 + 1).(22 + 1) · · · (2n + 1). (41)

By 2.22 · · · 2n = 2n(n−1)/2 one has

V (2n)

2n(n−1)/2
= 2.(1 +

1

2
).(1 +

1

22
) · · · (1 + 1

2n
). (41′)

Let xn = (1 + 1
2
).(1 + 1

22
) · · · (1 + 1

2n
). By the classical inequality,

ln(1 + x) < x (x > 0), (42)

we get

lnxn <
1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n
< 1. (43)

As the sequence (xn) is strictly increasing, and xn ∈ (1; e), it will be convergent, having a
limit xn → ι. (In other words, the infinite product converges to

∏∞
n=1(1 +

1
2x
) = ι.)

Inequality (43), combined with xn < xn+1 implies ι < e. On the other hand, we will prove
that xn > 2 for x ≥ 3. Indeed, x3 = 135

64
> 2, and assuming xn > 2 one has xn+1 > xn > 2, so

by induction we get xn > 2 for all n ≥ 3. Thus ι > 2, finishing the proof of Theorem 9.
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Theorem 10. For all n ≥ 2 one has

V (2n) > V (2n − 1), (44)

and

V (2n − 1) > 2n+2.(n+ 1) for n ≥ 4, (45)

if 2n = 1 is composite.

Proof. If d is odd, by Euler’s divisibility theorem one has d|(2ϕ(d) − 1). Therefore, there exists
the least r(d) (the order of d) such that d|(2r(d) − 1). It is well known (e.g., from Group theory)
that d|(2n − 1) iff r(d)|n. Therefore,

V (2n − 1) =
∑
d|2n−1

(d+ 1) ≤ 2
∑

d|n r(d) ≤ 2nd(n),

as d ≤ 2r(d) − 1 and r(d) ≤ n. By taking logarithms, by (41) it will be sufficient to prove that

ln 2 + ln(2 + 1) + · · ·+ ln(2n + 1) > nd(n) ln 2. (46)

As ln(2+1)+· · ·+ln(2n+1)−(ln 2+ln 22+· · ·+ln 2n) = lnxn,where (xn) is the sequence from
Theorem 9; by xn > 2 we get that the left-hand side of (46) is greater than (ln 2)

[
2 + n(n−1)

2

]
.

Therefore, one has to prove the inequality

nd(n) < 2 +
n(n− 1)

2
. (47)

Using again d(n) < 2
√
n (as in the proof of Theorem 2), the inequality

2n
√
n < 2 +

n(n− 1)

2
(48)

can be ealisy proved to hold for any n ≥ 25. However, by direct computations, (47) is true also
for 9 ≤ n ≤ 24. For n < 9 relation (44) may be verified directly.

For the proof of (45) we shall use a result due to A. Schinzel [4] to the effect that

P (2n − 1) ≥ 2n+ 1 for n ≥ 13, (49)

where P (m) denotes the greatest prime factor of m.
If 2n − 1 is not prime, then let 1 < p < 2n − 1 be its greatest prime divisor. Then clearly

V (2n − 1) ≥ 2.2n.(p+ 1) ≥ 2n+1.(2n+ 2) = 2n+2.(n+ 1)

for n ≥ 13. Put Mn = 2n − 1. It is known that M2,M3,M5,M7,M13, . . . are primes. For
n = 4, 6, 8, 9, 10, 11, 12, Mn are composite and in these cases relation (45) holds true. Therefore,
it is sufficient to assume n ≥ 4 and Mn composite.
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Remark 8. Let ε(n) > 0 and ε(n)→ 0 as n→∞. In 1977, P. Stewart [4] proved that

P (2n − 1) > ε(n).n(log n)2/ log log n, (50)

ignoring a set of integers of asymptotic density 0.
M. R. Murty and S. Wong [4] proved, assuming the ABC-conjecture, that for each fixed α > 0

one has

P (2n − 1) > n2−α for n ≥ n(α), (51)

where n(α) is an integer depending only on α.
Clearly all of these results can be used for the obtained lower bounds of V (2n − 1), when

2n − 1 is composite.

Remark 9. When 2n − 1 is prime, then V (2n − 1) = 2n+1 < V (2n + 1), as V (2n + 1) ≥
2.(2n + 2) = 2n+1 + 4. Therefore, for Mersenne primes it is true that:

V (2n − 1) < V (2n + 1). (52)

Conjecture 2. Inequality (52) holds true for infinitely many n. The reverse inequality also holds
true for infinitely many numbers n.

3 Conclusion

In the second part of this paper, more properties of V (n) will be studied.
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