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1 Introduction

Let N denote the set of all positive integers. For j, n ∈ N, let (j, n) denote their greatest common
divisor (gcd).

If S ⊆ N, then define

PS(n) =
n∑
j=i

(j,n)∈S

(j, n) for n ∈ N. (1.1)
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Observe that PN(n) = P (n), the arithmetic function studied by Pillai [9]. Possibly unaware of
this work, Broughan [5] considered the same function (under a different notation) and obtained an
asymptotic formula for

∑
n≤x

P (n). Later, Bordellès [2] improved the error term in that asymptotic

formula.
Also Bordellès [3] introduced a more general situation of

Pf (n) =
n∑
j=1

f ((j, n)) , (1.2)

where f is any arithmetic function and gave a proof of the Cesarò formula:

Pf (n) = (f ∗ ϕ) (n) for any n ∈ N, (1.3)

in which ϕ is the Euler totient function and ∗ is the classical Dirichlet product of arithmetic
functions. Moreover in the same paper unified asymptotic formulae for

∑
n≤x

Pf (n) are obtained

for multiplicative arithmetic functions that lie in certain special classes.
A very informative survey on the gcd-sum functions by Tóth [14] and the paper on the

weighted gcd-sum function (which is yet another general situation) by the same author [15] are
worth to be mentioned here.

The purpose of this paper is to estimate
∑
n≤x

PS(n), for S ⊆ N which satisfy a condition; and

to show that the formula of Bordellès [2] is deducible from our result. Further the formula is
applicable to a variety of sets of integers such as the set of r-free integers, the set of semi-r-free
integers and the set of (k, r)-integers studied by earlier researchers, in different contexts. The
error terms in these asymptotic formulae are better than those deducible from a theorem of
Bordellès ([3], Theorem 4, Part 4).

2 Notation and Preliminaries

For S ⊆ N, let χ
S
(n) be its characteristic function. (That is, χ

S
(n) = 1 or 0, respectively, as

n∈S or n /∈S.) Following Cohen [6], the Möbius function of S, denoted by µS(n), is defined by

µS(n) =
∑
d|n

µ (d)χ
S

(n
d

)
= (µ ∗ χ

S
)(n) for n ∈ N, (2.1)

where µ(n) is the well-known Möbius function.
Several properties of ∗ are studied in [1] (Chapter 2) some of which we use in this paper. For

example, if u(n) = 1 for all n ∈ N and ε0(n) = 1 or 0, respectively, as n = 1 or n > 1, then

µ ∗ u = ε0 (2.2)

and f ∗ ε0 = f for any arithmetic function f .
It follows from (2.1) and (2.2), that

µ{1} = µ and µN = ε0, (2.3)

since χ{1} = ε0 and χN = u; and that

χ
S

= u ∗ µS or equivalently χ
S
(n) =

∑
d|n

µS (d) for any S ⊆ N and n ∈ N. (2.4)
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Also if I(n) = n for all n ∈ N then I(f ∗ g) = If ∗ Ig for arithmetic functions f and g.
Further, it is clear that

(u ∗ u)(n) = τ(n), the number of positive divisors of n ∈ N. (2.5)

A well-known identity is

ϕ(n) =
∑
d|n

dµ
(n
d

)
or equivalently ϕ = I ∗ µ. (2.6)

Now we express below PS as a Dirichlet product of some of the functions mentioned above.

Lemma 2.1. PS = (IµS) ∗ (Iτ ∗ µ), for any S ⊆ N.

Proof. First observe that PS(n) =
n∑
j=1

I ((j, n))χ
S

((j, n)) = PIχ
S
(n), so that, in view of (1.3),

(2.4), (2.6) and (2.5),

PS = PIχ
S

= (Iχ
S
) ∗ ϕ = I(µS ∗ u) ∗ (I ∗ µ) = IµS ∗ Iu ∗ (Iu ∗ µ)

= IµS ∗ I(u ∗ u) ∗ µ = IµS ∗ (Iτ ∗ µ),

proving the lemma.

One can observe that if S = N then Lemma 2.1 gives P = Iτ ∗µ, a result proved by Bordellès
([2], Lemma 2.1).

If M(x) =
∑
n≤x

µ(n), then its exact order of magnitude is not known. The best estimate given

by Walfisz ([16], p.191) is that

M(x) = O (xδ(x)) for x > 1, (2.7)

where
δ(x) = exp{−A(log x)

3
5 .(log log x)

−1
5 }, (2.8)

in which A is a positive constant.
Note that δ(x) is a monotonic decreasing function.
Using (2.7), Suryanarayana and Siva Rama Prasad [13] proved that, when x > 1,∑

n≤x

µ(n)

nt
=

1

ζ(t)
+O

(
δ(x)

xt−1

)
for t > 1 ([13], Lemma 2.2) (2.9)

and ∑
n≤x

µ(n) log n

nt
=
ζ ′(t)

ζ2(t)
+O

(
δ(x) log x

xt−1

)
for t > 1 ([13], Lemma 2.3), (2.10)

where ζ(t) is the Riemann-zeta function.
The classical Dirichlet divisor problem seeks the least value of θ for which the asymptotic

formula ∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(xθ) (2.11)

holds, where γ is the Euler constant. It is known that 1
4
≤ θ ≤ 517

1648
. The lower bound for θ is due

to Hardy [8] while the upper bound is obtained recently by Bourgain and Watt [4].
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Now using (2.11) and the Abel’s identity ([1], Theorem 4.2), it is easy to prove∑
n≤x

I(n)τ(n) =
1

2
x2
(

log x+ 2γ − 1

2

)
+O

(
x1+θ+ε

)
, (2.12)

where ε > 0.

3 Main result

In this section we prove the theorem given below:

Theorem 3.1. Suppose S ⊆ N is such that the infinite series
∞∑
n=1

µS(n) log n

n
converges absolutely.

Then for x ≥ 1, we have∑
n≤x

PS(n) =
x2

2ζ(2)

{
αS

(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

)
− βS

}
+ ∆S(x),

where

∆S(x) =
x2

2ζ(2)
(βS(x)− αS(x)) +O

(
x1+θ+εγS(x)

)
, (3.1)

αS =
∞∑
n=1

µS(n)

n
, (3.2)

βS =
∞∑
n=1

µS(n) log n

n
, (3.3)

αS(x) =
∑
n>x

µS(n)

n
, (3.4)

βS(x) =
∑
n>x

µS(n) log n

n
, (3.5)

and

γS(x) =
∑
n≤x

|µS(n)|
nθ+ε

, (3.6)

in which ε > 0.

Proof. Under the hypothesis of the theorem, note that βS and hence αS are both well-defined.
By Lemma 2.1, we have PS = f ∗ g, where f = IµS and g = Iτ ∗ µ, so that

∑
n≤x

PS(n) =
∑
u≤x

f(u)

∑
v≤ x

u

g(v)

 . (3.7)

To estimate the inner sum on the right of (3.7), we use (2.12), (2.9) and (2.10) to get

∑
n≤x

g(n) =
∑
d≤x

µ(d)

∑
t≤x

d

I(t)τ(t)


=
∑
d≤x

µ(d)

{
(x/d)2

2

(
log
(x
d

)
+ 2γ − 1

2

)
+O

((x
d

)1+θ+ε)}
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=
x2

2

(
log x+ 2γ − 1

2

)∑
d≤x

µ(d)

d2
− x2

2

∑
d≤x

µ(d) log d

d2
+O

(
x1+θ+ε.

∑
d≤x

|µ(d)|
d1+θ+ε

)

=
x2

2

(
log x+ 2γ − 1

2

){
1

ζ(2)
+O

(
δ(x)

x

)}
− x2

2

{
ζ ′(2)

ζ2(2)
+O

(
δ(x) log x

x

)}
+O

(
x1+θ+ε

)
,

since
∑
d≤x

|µ(d)|
d1+θ+ε

= O(1). Thus

∑
n≤x

g(n) =
x2

2ζ(2)

{
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

}
+O (x log x δ(x)) +O

(
x1+θ+ε

)
=

x2

2ζ(2)

{
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

}
+O

(
x1+θ+ε

)
. (3.8)

Now, using (3.8) in (3.7), we get

∑
n≤x

PS(n) =
∑
u≤x

uµS(u)

{
(x/u)2

2ζ(2)

(
log
(x
u

)
+ 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+O

((x
u

)1+θ+ε)}
=

x2

2ζ(2)

{
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

}∑
u≤x

µS(u)

u
− x2

2ζ(2)

∑
u≤x

µS(u) log u

u
+ ES(x),

(3.9)

where ES(x) =
∑
u≤x

uµS(u)R(x, u), in which |R(x, u)| ≤ Cε ·
(
x
u

)1+θ+ε for some Cε > 0, so that

ES(x) = O

(
x1+θ+ε

∑
u≤x

|µS(u)|
uθ+ε

)
= O

(
x1+θ+ε · γS(x)

)
. (3.10)

Now (3.9) and (3.10) prove the theorem, since∑
u≤x

µS(u)

u
= αS − αS(x) and

∑
u≤x

µS(u) log u

u
= βS − βS(x).

Corollary 3.2. ([2, Theorem 1.1]) For x ≥ 1,∑
n≤x

P (n) =
x2

2ζ(2)

{
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

}
+O

(
x1+θ+ε

)
.

Proof. In view of (2.3), the condition of Theorem 3.1 holds if S = N. Also since αN = 1, βN = 0,
αN(x) = βN(x) = 0 and γN(x) = 1 for x ≥ 1, the corollary follows.
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Recall that, for t > 1,

ζ(t) =
∞∑
n=1

1

nt
(3.11)

and
1

ζ(t)
=
∞∑
n=1

µ(n)

nt
. (3.12)

Both the series on the right of (3.11) and (3.12) converge absolutely and, therefore, by Theorem
11.2 of [1], they can be differentiated term by term with respect to t, to get

ζ ′(t) = −
∞∑
n=1

log n

nt
for t > 1 (3.13)

and
ζ ′(t)

ζ2(t)
=
∞∑
n=1

µ(n) log n

nt
for t > 1. (3.14)

Now (2.9) and (3.12) give ∑
n>x

µ(n)

nt
= O

(
δ(x)

xt−1

)
for t > 1; (3.15)

while (2.10) and (3.14) show∑
n>x

µ(n) log n

nt
= O

(
δ(x) log x

xt−1

)
for t > 1. (3.16)

4 Application to some special subsets of N

In the rest of this paper n ∈ N with n > 1 is of the form n =
l∏

i=1

pαi
i , where p1, p2, . . . , pl are

distinct primes and integers αi are ≥ 1 for 1 ≤ i ≤ l.
To show the richness of the sets S ⊆ N for which Theorem 3.1 is applicable, first we make a

brief study of the M -free integers introduced by Rieger [10].
LetM be a set of positive integers with the minimal element r, where r > 1. A number n ≥ 1

is said to be M -free if αi /∈ M for i = 1, 2, . . . , l. The set of all M -free integers will be denoted
by QM .

Clearly 1 ∈ QM for every M ⊆ N. Also χ
QM

is a multiplicative function (that is,
χ

QM
(ab) = χ

QM
(a).χ

QM
(b) whenever (a, b) = 1). Then, by (2.1), µQM

is a multiplicative
function. Further for any prime p and α ∈ N we have

µQM
(pα) = χ

QM
(pα)− χ

QM
(pα−1)

=


−1 if α ∈M∗ = {α ∈ N : α ∈M and α− 1 /∈M}

1 if α ∈M∗∗ = {α ∈ N : α /∈M and α− 1 ∈M}
0 otherwise.

(4.1)

Hence, for n > 1, the value µQM
(n) is non-zero if and only if (shortly, iff) n can be written as

21



n = n∗.n∗∗, where n∗ =
∏

αi∈M∗
pαi
i and n∗∗ =

∏
αi∈M∗∗

pαi
i which are such that (n∗, n∗∗) = 1 (since

M∗ ∩M∗∗ = ∅). Also in this case

µQM
(n) = (−1)ω(n

∗) · 1ω(n∗∗) = (−1)ω(n
∗), (4.2)

where ω(m) is the number of distinct prime factors of m.
Notice that unless the elements of M are known explicity, we cannot find M∗ and M∗∗; and

thereby we cannot determine those n for which µQM
(n) 6= 0 . Therefore we take some special

sets for M and the corresponding QM below.

4.1 The set of r-free integers

Suppose A = {r, r + 1, r + 2, . . .}, where r ∈ N and r > 1. Then n > 1 is in QA iff
1 ≤ αi ≤ r − 1 for i = 1, 2, . . . , l. In other words, an integer n > 1 is in QA iff pr is not a
divisor of n for any prime p. Such numbers are called r-free integers in the literature. In fact,
2-free integers are well-known as square-free integers. Clearly n is square-free iff µ2(n) = 1.
Thus QA is the set of all r-free integers.

For this set A, we find A∗ = {α ∈ N : α ∈ A and α− 1 /∈ A} = {r} and
A∗∗ = {α ∈ N : α /∈ A and α− 1 ∈ A} = ∅, so that n∗ =

∏
αi∈A∗

pαi
i = ar, where a = p1p2 · · · pl

is square-free and n∗∗ = 1. Therefore µQA
(n) is non-zero iff n = ar, for some square-free a.

Also, by (4.2), for such n, µQA
(n) = (−1)ω(a) = µ(a).

Hence by (3.12) and (3.14), we get

αQA
=
∞∑
a=1

µ(a)

ar
=

1

ζ(r)
; (4.3)

and

βQA
= r ·

∞∑
a=1

µ(a) log a

ar
= r · ζ

′(r)

ζ2(r)
. (4.4)

Also, by (3.15) and (3.16), we have

αQA
(x) =

∑
a>x1/r

µ(a)

ar
= O

(
δ(x1/r)

x1−
1
r

)
and

βQA
(x) = r ·

∑
a>x1/r

µ(a) log a

ar
= O

(
δ(x1/r) log x

x1−
1
r

)
,

so that
x2 · |βQA

(x)− αQA
(x)| = O

(
x1+

1
r δ(x1/r) log x

)
. (4.5)

Further γQA
(x) =

∑
a≤x1/r

|µ(a)|
ar(θ+ε)

in which r(θ + ε) ≤ 3
(

517
1648

+ ε
)
< 1 for sufficiently small

ε > 0 in case r = 2 or 3; and that r(θ + ε) > 1 if r ≥ 4. Therefore

γQA
(x) =

{
O
(
x

1
r
−θ−ε

)
, if r = 2 or 3

O(1), if r ≥ 4.
(4.6)
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Hence, by (4.5) and (4.6), we find

∆QA
(x) =

 O
(
x1+

1
r δ(x

1
r ) log x

)
+O

(
x1+

1
r

)
, if r = 2 or 3

O
(
x1+

1
r δ(x

1
r ) log x

)
+O

(
x1+θ+ε

)
, if r ≥ 4

=

{
O
(
x1+

1
r

)
, if r = 2 or 3

O
(
x1+θ+ε

)
, if r ≥ 4.

(4.7)

In view of (4.4), the condition of Theorem 3.1 holds for S = QA. Hence by (4.3), (4.4) and
(4.7) we have a new asymptotic formula given below:

Corollary 4.1. For x ≥ 1,∑
n≤x

PQA
(n) =

x2

2ζ(2)ζ(r)

(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)
− rζ

′(r)

ζ(r)

)
+ ∆QA

(x),

where ∆QA
(x) is as in (4.7).

Note that

PQA
(n) =

n∑
j=i

(j,n) is r-free

(j, n).

4.2 The set of semi-r-free integers

Suppose B = {r}, where r ∈ N and r > 1. Then n > 1 is in QB iff αi 6= r for i = 1, 2, . . . , l.
In other words, n ∈ QB iff pr is not a unitary divisor of n for any prime p. (Recall that a divisor
d of n is said to be unitary if

(
d, n

d

)
= 1.) Such n is called a semi-r-free integer in [12]. Thus QB

is the set of all semi-r-free integers.
For this set B, we note B∗ = {α ∈ N : α ∈ B and α− 1 /∈ B} = {r}, while

B∗∗ = {α ∈ N : α /∈ B and α− 1 ∈ B} = {r + 1}, so that n∗ =
∏
αi∈B∗

pαi
i = ar and n∗∗ =∏

αi∈B∗∗
pαi
i = br+1, where a and b are both square-free. Thus µQB

(n) 6= 0 iff n = arbr+1,

where a and b are both square-free; and (a, b) = 1. For such n, we have, by (4.2), that
µQB

(n) = (−1)ω(a)µ2(b) = µ(a)µ2(b).
Hence

αQB
=
∞∑
a=1

∞∑
b=1

µ(a)µ2(b)

arbr+1
=

(
∞∑
a=1

µ(a)

ar

)(
∞∑
b=1

µ2(b)

br+1

)
=

1

ζ(r)

ζ(r + 1)

ζ(2r + 2)
, (4.8)

by (3.12) and the fact that
∞∑
n=1

µ2(n)

nt
=

ζ(t)

ζ(2t)
, which can be proved by Euler product

representation theorem ([1], Theorem 11.6).
Also using this fact, Theorem 11.12 of [1], (3.12) and (3.14), we get
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βQB
=
∞∑
a=1

∞∑
b=1

µ(a)µ2(b)

arbr+1
{r log a+ (r + 1) log b}

= r

(
∞∑
a=1

µ(a) log a

ar

)(
∞∑
b=1

µ2(b)

br+1

)
+ (r + 1)

(
∞∑
a=1

µ(a)

ar

)(
∞∑
b=1

µ2(b) log b

br+1

)

= r
ζ ′(r)

ζ2(r)

ζ(r + 1)

ζ(2r + 2)
− (r + 1)

1

ζ(r)
· d
dr

(
ζ(r + 1)

ζ(2r + 2)

)
=

ζ(r + 1)

ζ(r)ζ(2r + 2)

{
r
ζ ′(r)

ζ(r)
− (r + 1)

ζ ′(r + 1)

ζ(r + 1)
+ (2r + 2)

ζ ′(2r + 2)

ζ(2r + 2)

}
. (4.9)

Further, by (3.15) and (3.16), we have

αQB
(x) =

∑
arbr+1>x

µ(a)µ2(b)

arbr+1
=
∞∑
b=1

µ2(b)

br+1


∑

a>( x
br+1 )

1/r

µ(a)

ar


= O

(
∞∑
b=1

µ2(b)

b1+
1
r

· δ(x
1/r)b1+

1
r

x1−
1
r

)
= O

(
δ(x1/r)

x1−
1
r

·
∞∑
b=1

µ2(b)

b1+
1
r

)
= O

(
δ(x1/r)

x1−
1
r

)
(4.10)

and

βQB
(x) =

∑
arbr+1>x

µ(a)µ2(b)

arbr+1
{r log a+ (r + 1) log b}

= r
∞∑
b=1

µ2(b)

br+1


∑

a>( x
br+1 )

1/r

µ(a) log a

ar

+ (r + 1)
∞∑
b=1

µ2(b) log b

br+1


∑

a>( x
br+1 )

1/r

µ(a)

ar


= O

(
∞∑
b=1

µ2(b)

br+1
· δ(x

1/r) log x

(x/br+1)1−
1
r

)
+O

(
∞∑
b=1

µ2(b) log b

br+1
· δ(x1/r)

(x/br+1)1−
1
r

)

= O

(
δ(x1/r) log x

x1−
1
r

)
, (4.11)

so that, by (4.10) and (4.11), we get

x2|βQB
(x)− αQB

(x)| = O
(
x1+

1
r δ(x1/r) log x

)
. (4.12)

Also

γQB
(x) =

∑
a≤x1/r

|µ(a)|
ar(θ+ε)

 ∑
b≤( x

ar )
1/r+1

1

b(r+1)(θ+ε)



=



O

 ∑
a≤x1/r

|µ(a)|
ar(θ+ε)

·
( x
ar

) 1
r+1
−θ−ε

 , if r = 2

O

 ∑
a≤x1/r

|µ(a)|
ar(θ+ε)

 , if r = 3

O(1), if r ≥ 4

=

{
O
(
x

1
r
−θ−ε

)
, if r = 2 or 3

O(1), if r ≥ 4.
(4.13)
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Now (4.12) and (4.13) give

∆QB
(x) =

{
O
(
x1+

1
r

)
, if r = 2 or 3

O
(
x1+θ+ε

)
, if r ≥ 4.

(4.14)

Here the condition of Theorem 3.1 holds for S = QB in view of (4.9). Therefore using (4.8),
(4.9) and (4.14) in Theorem 3.1 we get another asymptotic formula given below:

Corollary 4.2. For x ≥ 1,∑
n≤x

PQB
(n) =

ζ(r + 1)

2ζ(2)ζ(r)ζ(2r + 2)
x2
(

log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)
− F (r)

)
+ ∆QB

(x),

where F (r) = r ζ
′(r)
ζ(r)
− (r + 1) ζ

′(r+1)
ζ(r+1)

+ (2r + 2) ζ
′(2r+2)
ζ(2r+2)

and ∆QB
(x) is as given in (4.14).

Note that

PQB
(n) =

n∑
j=i

(j,n) is semi-r-free

(j, n).

4.3 The set of (k, r)-integers

Let r, k ∈ N be such that 2 ≤ r < k. Suppose C = {α ∈ N : α ≥ r and α ≡ j (mod k)

for some j with r ≤ j ≤ k − 1} .
Now n > 1 is in QC iff for each i (1 ≤ i ≤ l) we have either αi < r or αi ≡ vi (mod k) for

some vi with 0 ≤ vi ≤ r − 1 in which case we can write n as

n =
l∏

i=1
αi≥r

pkui+vii ·
l∏

i=1
αi<r

pαi
i ,

where ui ∈ N. Thus n ∈ QC iff n = ak.b.c, where a =
∏
αi≥r

puii , b =
∏
αi≥r

pvii and c =
∏
αi<r

pαi
i .

Here (ab, c) = 1; and b, c are both r-free giving bc is r-free. Hence n ∈ QC iff n is of the
form n = ak · m, where a ∈ N and m = bc ∈ QA (the set of r-free integers). Such numbers
are called (k, r)-integers in [11]; and the same numbers were considered by Cohen [7], under
a different notation. Since (∞, r)-integers are r-free integers, the notion of a (k, r)-free integer
may be regarded as a generalization of an r-free integer. Thus QC is the set of all (k, r)-integers.

For this set C, the set C∗ = {α ∈ N : α ∈ C and α− 1 /∈ C} = {α ∈ N : α ≡ r (mod k)}
and C∗∗ = {α ∈ N : α /∈ C and α− 1 ∈ C} = {α ∈ N : α ≡ 0 (mod k)}. Therefore, by (4.2),
for n > 1, writing αi = kui + r if αi ∈ C∗ and αi = kvi if αi ∈ C∗∗, we have n = akbrck, where
a =

∏
αi∈C∗

puii , b =
∏
αi∈C∗

pi and c =
∏

αi∈C∗∗
pvii . Also for such n the value of µQC

(n) is non-zero

and is given by µQC
(n) = µ(b), since b is square-free.

Hence

αQC
=
∞∑
a=1

∞∑
b=1

∞∑
c=1

µ(b)

akbrck
=

(
∞∑
a=1

1

ak

)(
∞∑
b=1

µ(b)

br

)(
∞∑
c=1

1

ck

)
=
ζ2(k)

ζ(r)
(4.15)
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and

βQC
=
∞∑
a=1

∞∑
b=1

∞∑
c=1

µ(b) {k log a+ r log b+ k log c}
akbrck

= k

(
∞∑
a=1

log a

ak

)(
∞∑
b=1

µ(b)

br

)(
∞∑
c=1

1

ck

)
+ r

(
∞∑
a=1

1

ak

)(
∞∑
b=1

µ(b) log b

br

)(
∞∑
c=1

1

ck

)

+ k

(
∞∑
a=1

1

ak

)(
∞∑
b=1

µ(b)

br

)(
∞∑
c=1

log c

ck

)

= −kζ
′(k)ζ(k)

ζ(r)
+ r

ζ2(k)ζ ′(r)

ζ2(r)
− kζ(k)ζ ′(k)

ζ(r)

=
ζ(k)

ζ2(r)
{rζ(k)ζ ′(r)− 2kζ(r)ζ ′(k)} , (4.16)

wherein we used (3.11), (3.12), (3.13) and (3.14).
Also, by (3.15)

αQC
(x) =

∑
ukbr>x

µ(b)

ukbr
=
∞∑
u=1

1

uk


∑

b>( x

uk
)
1/r

µ(b)

br


= O

(
∞∑
u=1

1

uk
δ(x1/r)

(x/uk)1−
1
r

)
= O

(
δ(x1/r)

x1−
1
r

·
∞∑
u=1

1

uk/r

)

= O

(
δ(x1/r)

x1−
1
r

)
, (4.17)

because 2 ≤ r < k implies that the series in the order term is convergent.
Again, using (3.15) and (3.16), we find that

βQC
(x) =

∑
ukbr>x

µ(b) log(ukbr)

ukbr

= k
∑

ukbr>x

µ(b) log u

ukbr
+ r

∑
ukbr>x

µ(b) log b

ukbr

= k
∞∑
u=1

log u

uk

 ∑
b>( x

uk
)
1/r

µ(b) log b

br

+ r

∞∑
u=1

1

uk

 ∑
b>( x

uk
)
1/r

µ(b)

br


= O

(
∞∑
u=1

log u

uk
δ(x1/r)

(x/uk)1−
1
r

)
+O

(
∞∑
u=1

1

uk
δ(x1/r) log x

(x/uk)1−
1
r

)

= O

(
δ(x1/r)

x1−
1
r

∞∑
u=1

log u

uk/r

)
+O

(
δ(x1/r) log x

x1−
1
r

∞∑
u=1

1

uk/r

)

= O

(
δ(x1/r) log x

x1−
1
r

)
, (4.18)

because 2 ≤ r < k implies that both the series in the order terms are convergent.
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Hence
x2 · |βQC

(x)− αQC
(x)| = O

(
x1+

1
r δ(x1/r) log x

)
. (4.19)

Further

γQC
(x) =

∑
ukbr≤x

|µ(b)|
uk(θ+ε)br(θ+ε)

=
∑
u≤x1/k

1

uk(θ+ε)

 ∑
b≤( x

uk
)
1/k

|µ(b)|
br(θ+ε)


=

{
O
(
x

1
r
−θ−ε

)
, if r = 2 or 3

O(1), if r ≥ 4.
(4.20)

Now (4.19) and (4.20) give

∆QC
(x) =

{
O
(
x1+

1
r

)
, if r = 2 or 3

O(x1+θ+ε), if r ≥ 4.
(4.21)

In view of (4.16), the condition of Theorem 3.1 holds if S = QC . Therefore using (4.15),
(4.16) and (4.21) in Theorem 3.1, we get yet another asymptotic formula.

Corollary 4.3. For x ≥ 1,∑
n≤x

PQC
(n) =

ζ(k).x2

2ζ(2)ζ(r)

{
ζ(k)

(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

)
− 1

ζ(r)
(rζ ′(r)ζ(k)− 2kζ(r)ζ ′(k))

}
+ ∆QC

(x),

where ∆QC
(x) is as in (4.21).

Note that

PQC
(n) =

n∑
j=1

(j,n) is a (k,r)-integer

(j, n).

Remark 4.4. Any f ∈ {IχQA
, IχQB

, IχQC
} lies in the class of multiplicative functions discussed

in the case 4 of Theorem 4 in [3], wherein asymptotic formula with error term O(x2) is given
for
∑
n≤x

Pf (n). That is, the asymptotic formulae established in Corollaries 4.1, 4.2 and 4.3 are

deducible from case 4 of Theorem 4 in [3], but with error terms O(x2) in each case. Observe that
the error terms obtained in this paper are better than those in [3].
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