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1 Introduction

45 years ago, in [7], A. G. Shannon introduced the following, back then new, arithmetic function:

δ(m, s) =

{
1, if m | s
0, otherwise

. (1)

Here, we give an explicit representation of (1).
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2 Preliminaries

For the needs of the next section, we introduce two functions.
Let N be the set of all positive integers. If n > 1 and n ∈ N, then n has the form

n =
k∏
i=1

pαi
i

that is called a canonical factorization of n, where k, α1, . . . , αk ∈ N, n > 1, p1, . . . , pk are
different primes. For n it is defined the set-theoretical function (see [1])

set(n) = {p1, p2, . . . , pk},

and the arithmetic function (see [2])

sg(x) =


1, if x ≤ 0

0, otherwise
.

3 Main result

Having in mind that the natural number m divides the natural number s if and only if (iff) each
divisor of m is a divisor of s and the degree with this divisor participate in m is smaller or equal
to the degree with this divisor participate in s, we can represent this assertion in the following
predicate logical form:

P (m, s) = “(∀p ∈ set(m))(degm(p) ≤ degs(p))”,

where degm(p) is the degree with which the prime number p participates in the natural number
m.

It is clear that if the predicate P (m, s) is true, then set(m) ⊆ set(s).
Now, we give an arithmetic form of predicate P (m, s). It is

P (m, s) =
∏

p ∈ set(m)

sg(degm(p)− degs(p)).

Really,

sg(degm(p)− degs(p)) =

{
1, if degm(p) ≤ degs(p)

0, otherwise
.

Therefore,

P (m, s) =

{
1, if (∀p ∈ set(m))(degm(p) ≤ degs(p))

0, otherwise
.

Hence, giving an arithmetic form of the predicate P (m, s), we proved the following theorem.
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Theorem 1. For every two natural numbers m and s:

δ(m, s) =
∏

p ∈ set(m)

sg(degm(p)− degs(p)). (2)

The δ-function can be used for representation, e.g., of the prime omega function ω(n) giving
the number of the distinct prime divisors of n ∈ N, n > 1 and ω(1) = 0.

Theorem 2. For each natural number n ≥ 2:

ω(n) =
∑
p≤n

δ(p, n),

where the variable p represents a prime number.
Proof. Let n ≥ 2 be given. Then for each p (2 ≤ p ≤ n), from (2) we obtain:

δ(p, n) =

{
1, if p | n
0, otherwise

.

Hence,
n−1∑
i=2

δ(p, n) is the number of the divisors of the natural number n. �

4 Conclusion

The delta symbol was obviously chosen because of a connection with the Kronecker delta δm,s:

δm,s = δ(m, s)δ(s,m),

since
δ(m, s)δ(s,m) = 1

iff m | s and s | m; that is, iff m = s; otherwise

δ(m, s)δ(s,m) = 0.

The δ(m, s) was used in solving a problem of Morgan Ward [8] for a generalization of the
Staudt–Clausen problem [3]. Further, Mollie Horadam [4] defined the function

e(n) =

{
1, if n = 1

0, otherwise
.

Note that e(n) = δ(n, 1), n ≥ 1, and

e(n) =
∑
d|n

µ(d),

where µ(d) is the Möbius function. Of more immediate relevance to this paper is that e(n) acts as
an identity element for δ(n, n). Popken [6] defined the convolution product of two arithmetical
functions f(n) and g(n) as

f(n) ∗ g(n) =
∑
d|n

f(d)g
(n
d

)
.
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For notational convenience for convolutions associated with the delta functions, we shall
consider the first term in the parentheses as the one indexed, so that

e(n) ∗ δ(n, n) =
∑
d|n

e(d)δ
(n
d
, n
)
= e(1)δ(n, n) + 0 = δ(n, n),

as required.
The use of notation can itself be mathematically creative and stimulate further enquiry which

sometimes leads to patterns of importance [5].
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