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Abstract: For a fixed positive integer κ, the functional equation

κf(m2 + n2) = f(κm2) + κf(n2) (m,n ∈ N)
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1 Introduction

An arithmetic function, [9], is a complex-valued function whose domain is the set of positive
integers, N. A multiplicative function is a non-zero arithmetic function which satisfies the
multiplicative relation

f(mn) = f(m)f(n) for all m,n ∈ N with gcd(m,n) = 1. (1)
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A multiplicative function is said to be completely multiplicative if the relation (1) holds for all
m,n ∈ N without the restriction on their greatest common divisor. Following Spiro [13], a set
E ⊆ N is called an additive uniqueness set for a set S of arithmetic functions if the only function
f ∈ S which satisfies the additive condition

f(m+ n) = f(n) + f(n) for any m,n ∈ E, (2)

is the identity function f(n) = n; Spiro proved in the paper that the set of primes is an additive
uniqueness set for the set of multiplicative functions non–zero at some prime. In 2011, Fang [4]
proved the same result when the functional equation (2) contains three primes. Later, Dubickas
and Šarka [3] settled the general case by establishing the same result for the additive condition
containing k (≥ 2) primes.

In another direction, in 1996 Chung [2] characterized all multiplicative functions f satisfying

f(m2 + n2) = f(m2) + f(n2) (m,n ∈ N). (3)

Chung proved that there are only two possible categories of solutions, the first of which contains
the identity function. Slightly different but simliar to Chung’s functional equation (3) is the
functional equation

f(m2 + n2) = f(m)2 + f(n)2 (m,n ∈ N),

which was solved by Bašić, [1] without the restriction on the multiplicative property of the
solutions. Bašić found that solution functions fall roughly into three categories: f ≡ 0, or
f(n) = ±n, or f(n) = ±1

2
. A similar functional equation containing a sum of k (≥ 3) squares

f(a21 + a22 + · · ·+ ak
2) = f(a1)

2 + f(a2)
2 + · · ·+ f(ak)

2,

was treated by Park [12] who showed that the only multiplicative solution function is the identity
function. Along the same vein, Park in [11] proved that if a multiplicative function f satisfies the
functional equation, with k ≥ 3,

f(a21 + a22 + · · ·+ ak
2) = f(a1

2) + f(a2
2) + · · ·+ f(ak

2)

which is a k-dimensional version of the equation (3), then it must be the identity function.
For other related recent works, we refer to [5–8].
In the present work, we solve the functional equation

κf(m2 + n2) = f(κm2) + κf(n2) for all m,n ∈ N (4)

for a multiplicative function f , where κ is a positive integer kept fixed throughout. Chung’s
functional equation (3) corresponds to the case κ = 1. Our main result is

Theorem 1.1. Let κ ∈ N be fixed, and let f be a multiplicative function. Let F1 be the family of
multiplicative functions f such that

A1) f(2t) = 2t for all integers t ≥ 0;

A2) f(pt) = pt for all primes p ≡ 1 (mod 4) and all t ∈ N;

A3) f(q2t) = q2t for all primes q ≡ 3 (mod 4) and all t ∈ N,
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let F2 be the family of multiplicative functions f such that

B1) f(2) = 2, f(2t) = 0 for all integers t ≥ 2;

B2) f(pt) = 1 for all primes p ≡ 1 (mod 4) and all t ∈ N;

B3) f(q2t) = 1 for all primes q ≡ 3 (mod 4) and all t ∈ N,

and let F3 be the family of multiplicative functions f such that

C1) f(2) = 1 + 1
κ
f(κ), f(2t) = 2− f(2) for all integers t ≥ 2;

C2) f(pt) = 1 for all primes p ≡ 1 (mod 4) and all t ∈ N;

C3) f(q2t) = 1 for all primes q ≡ 3 (mod 4) and all t ∈ N.

Then f satisfies the functional equation (4) if and only if f fulfills the conditions

f(a2ακ) = κf(a2α) + f(κ)− κ for all a, α ∈ N, (5)

and belongs to one of the following families:

Fam1) f ∈ F1 and f(κ) = κ, or

Fam2) f ∈ F2 and f(κ) = κ (provided that κ = 1 or 2), or

Fam3) f ∈ F3 and f(κ) 6= κ.

2 Auxiliary lemmas

In this section, we gather some auxiliary results needed in the proof of our main theorem; the first
is taken from [2].

Lemma 2.1 ([2, Theorem, Corollary]). I. Let f be a multiplicative function. Then f satisfies the
functional equation

f(m2 + n2) = f(m2) + f(n2) for all m,n ∈ N (6)

if and only if either f ∈ F1, or f ∈ F2.

II. Let f be a completely multiplicative function. Then f satisfies (6) if and only if f(2) = 2,

f(p) = p for all primes p ≡ 1 (mod 4), and f(q) ∈ {q, −q} for all primes q ≡ 3 (mod 4).

The next lemma is known as the sum of two squares theorem, due to Fermat, which will be
prominent in our present work.

Lemma 2.2 ([10, Theorem 2.15]). Write the canonical prime factorization of n in the form

n = 2α
∏

p ≡ 1 mod 4

pβ
∏

q ≡ 3 mod 4

qγ,

where the product runs through distinct primes p’s and q’s. Then n can be expressed as a sum of
two squares of integers if and only if all the exponents γ are even.
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The next lemma is used often in the proof of Lemma 2.4 and we omit its easy proof.

Lemma 2.3. For an odd integer N , we can write

N2 + 1 = 2

((
N + 1

2

)2

+

(
N − 1

2

)2
)
, (7)

where (N ± 1)/2 are integers and gcd
(
((N + 1)/2)2 + ((N − 1)/2)2 , 2

)
= 1.

For our main functional equation (4), the following properties are basic.

Lemma 2.4. Suppose f satisfies (4). Let Aκ := 1
κ
(f(κ)− κ). Then for all a, α ∈ N we have

P1) f(a2ακ) = κf(a2α) + f(κ)− κ;

P2) f(a2α) = f(a2α−2)(f(a2 + 1)− 1)− Aκ;

P3) Aκ = f(2)− 2, f(κ) = κ(f(2)− 1);

P4) f(22α) = f(22α−2)(f(4) + Aκ)− Aκ;

P5) i) f(5) = f(4) + f(2)− 1,

ii) f(9) = f(4)f(2) + f(2)2 − 2f(2) + 1,

iii) f(13) = f(4)(f(2) + 1) + f(2)(Aκ + 1)− 1,

iv) f(25) = f(2)[f(4)(f(2) + 1) + f(2)(Aκ + 1)− 1]− Aκ − 1;

P6) f(2) ∈ {2, 2− f(4)}.

Proof. To prove P1), using (4) twice, and using the fact that f(1) = 1 for multiplicative functions,
we have f(κ · 12) + κf(a2α) = κf(a2α + 12) = f(κa2α) + κf(12), and the assertion follows.

To prove P2), from P1), using (4), and the multiplicativity of f (since gcd(a2α−2, a2+1) = 1),
we get

κf(a2α) + f(κ)− κ+ κf(a2α−2) = f(a2ακ) + κf(a2α−2) = κf(a2α + a2α−2)

= κf(a2α−2)f(a2 + 1),

and the assertion follows after simplification.
To prove P3), note that putting m = n = 1 into (4), we get f(2) = 1

κ
f(κ) + 1, and so the

definition of Aκ gives Aκ = 1
κ
f(κ)− 1 = f(2)− 2.

To prove P4), first note that putting m = 2, n = 1 in (4) and using P1), we get

κf(5) = κf(22 + 12) = f(4κ) + κf(1) = κf(4) + f(κ)− κ+ κ,

which gives f(5) = f(4) + 1 + Aκ = f(4) + f(2) − 1. Substituting this into P2) with a = 2

yields the assertion.
Regarding P5), assertion i) has just been verified in the proof of P4). To prove assertion ii),

we start by using i), multiplicativity, (4), and P1) to get

κf(2)(f(4) + 1 + Aκ) = κf(2)f(5) = κf(10) = κf(32 + 12) = f(32κ) + κf(12)

= κf(9) + f(κ).
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Simplifying using P3), the assertion follows. For assertion iii), using (4) and P1), we have

κf(13) = κf(32 + 22) = f(32κ) + κf(22) = κf(9) + f(κ)− κ+ κf(4),

and the result follows by simplifying using ii) and the definition of Aκ. For assertion iv), we start
with iii), multiplictivity, (4) and P1), to get

κf(2) {f(4)(f(2) + 1) + f(2)(Aκ + 1)− 1} = κf(2)f(13) = κf(26)

= κf(52 + 12) = f(52κ) + κf(12) = κf(52) + f(κ),

and the assertion follows by simplifying using the definition of Aκ.
To prove P6), using multiplicativity, the functional equation and P1), we get

κf(2)f(9) = κf(18) = κf(32 + 32) = f(32κ) + κf(32) = 2κf(32) + f(κ)− κ.

Replacing Aκ in P5) part ii) and using P3), we have

f(9) = f(4)f(2) + f(2)2 − 2f(2) + 1.

Using P3) and simplifying, we get

0 = κf(2)f(9)− 2κf(32)− f(κ) + κ = κf(2)(f(2)− 2)(f(4) + f(2)− 2),

and so

f(2) = 0, or f(2) = 2 or f(2) = 2− f(4). (8)

On the other hand, from the functional equation (4), P1) and P3), we have

κf(8) = κf(22 + 22) = f(22κ) + κf(22) = 2κf(4) + κf(2)− 2κ, (9)

and

κf(5)f(8) = κf(40) = κf(22 + 62) = f(22κ) + κf(62) = κf(4) + f(κ)− κ+ κf(4)f(9).

In this last relation, replacing κf(8) from (9), and simplifying, we get

f(5) (2f(4) + f(2)− 2) = f(4) + f(2)− 2 + f(4)f(9).

Substituting the values of f(5) and f(9) from P5), and simplifying, we arrive at

(f(2)− 2)(f(4)− 1)(f(4) + f(2)− 2) = 0. (10)

If f(2) 6= 2 and f(2) 6= 2 − f(4), then from (8) we must have f(2) = 0 and from (10) we
must have f(4) = 1. The assertions P5) ii) and iv) now yield f(9) = 1 = f(25), and so, using
also P3), the expressions P1) and P4) respectively become

f(a2ακ) = κf(a2α)− 2κ, f(22α) = f(22α−2)(f(4)− 2) + 2. (11)
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Applying (11) to the first term on the right-hand side of (4) and simplifying, we get

f(m2 + n2) = f(m2) + f(n2)− 2. (12)

Replacing m = 4, n = 3, we obtain f(16) = f(25) − f(9) + 2 = 2. In another direction, by
(11), we have f(16) = f(24) = f(22)(f(4) − 2) + 2. Equating the last two equalities yields
f(4) ∈ {0, 2}. This give a contradiction to f(4) = 1, and thus we conclude that

f(2) = 2 or f(2) = 2− f(4).

From the last lemma, there are two possible values of f(2), the next lemma deals with each
of these possibilities.

Lemma 2.5. Assume that the multiplicative function f satisfies the functional equation (4).

I) If f(κ) = κ, then either f ∈ F1, or f ∈ F2 (provided that κ = 1 or 2).

II) If f(κ) 6= κ, then f ∈ F3.

Proof. I) Since f(κ) = κ, the property P1) in Lemma 2.4 reduces to f(a2ακ) = κf(a2α).
Simplifying (4) using this last relation leads to f(m2 + n2) = f(m2) + f(n2). The desired
result follows by appealing to Lemma 2.1.

II) Since f(κ) 6= κ, the property P3) in Lemma 2.4 implies f(2) 6= 2, and so the property P6)
yields f(2) = 2− f(4) with f(4) 6= 0. We now claim that

II-0) f(2) = 1 + 1
κ
f(κ);

II-i) f(2t) = 2− f(2) for all integers t ≥ 2;

II-ii) f(m2) = 1 for all odd m ∈ N;

II-iii) f(n2) = 2− f(2) for all even n ∈ N;

II-iv) f(pt) = 1 for all primes p ≡ 1 (mod 4) and all t ∈ N;

II-v) f(q2t) = 1 for all primes q ≡ 3 (mod 4) and all t ∈ N.

To prove II-0), putting m = n = 1 into (4), the result follows immediately.
To prove II-i), note that the properties P3) and P4) give

f(22α) = −Aκ = 2− f(2) (13)

showing that II-i) holds for all even t ∈ N. We now argue by induction on t. Assume that
f(2t) = 2 − f(2) holds for all t = 2, 3, . . . , n. We show that f(2n+1) = 2 − f(2). This is
immediate if n + 1 is even. Assume then that n + 1 = 2s + 1 is odd. The equation (4), P1), P3)
and the induction hypothesis together give

κf(2n+1) = κf(22s + 22s) = f(22sκ) + κf(22s) = 2κf(22s) + κAκ = −κAκ,

proving II-i).
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To prove II-ii), note that by multiplicativity, it trivially holds when m = 1. Assume that
f(m2) = 1 for all odd m ∈ {1, 3, . . . , n − 2}, n odd ≥ 3. We show that f(n2) = 1. Since n is
odd, from P1), using (4), Lemma 2.3, the multiplicativity of f , (4) and P1) again, we have

κf(n2) + f(κ) = f(κn2) + κ = κf(n2 + 1)

= κf(2)f

((
n+ 1

2

)2

+

(
n− 1

2

)2
)

= f(2)

(
f

(
κ

(
n+ 1

2

)2
)

+ κf

((
n− 1

2

)2
))

= f(2)

(
κf

((
n+ 1

2

)2
)

+ κf

((
n− 1

2

)2
)

+ f(κ)− κ

)
. (14)

If n ≡ 1 (mod 4), then (n − 1)/2 ∈ N is even, while (n + 1)/2 ∈ N is odd. Substituting
(n−1)/2 = 2`s, where s is odd < (n−1)/2 < n and ` ∈ N, the right-hand side of (14) becomes

f(2)
(
κf
(
((n+ 1)/2)2

)
+ κf(22`)f(s2) + f(κ)− κ

)
Applying the induction hypothesis, II-i), P3), and the definition of Aκ to this last expression, we
get

κf(n2) + f(κ) = f(2) (κ+ κ(2− f(2)) + f(κ)− κ) = κf(2).

Using f(κ) = κ(f(2) − 1), which results from P3) and the definition of Aκ, the assertion II-ii)
follows in this case. The case where n ≡ 3 (mod 4) is proved analogously.

To prove II-iii), for even n ∈ N, write n = 2`s, where s < n is odd and ` ∈ N. Using
multiplicativity, II-i) and II-ii), we have f(n2) = f(22`)f(s2) = 2− f(2).

To prove II-iv), we make use of Lemma 2.2. For any prime p ≡ 1 (mod 4), there exist odd
mo ∈ N and even ne ∈ N such that pt = m2

o + n2
e for all t ∈ N. By (4), Lemma 2.4 P1), P3), and

simplifying, we have

κf(pt) = κf(m2
o + n2

e) = f(κm2
o) + κf(n2

e) = κf(m2
o) + κf(n2

e) + f(κ)− κ

which is equivalent to

f(pt) = f(m2
o) + f(n2

e) + Aκ = f(m2
o) + f(n2

e) + f(2)− 2.

Using II-ii) and II-iii), we arrive at

f(pt) = 1 + 2− f(2) + f(2)− 2 = 1.

The assertion II-v) follows immediately from II-ii).
This completes the proof.
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3 Proofs of Theorem 1.1 and its corollary

Assume that the multiplicative function f satisfies the functional equation (4). Lemma 2.4 P1)
shows that (5) holds. If f(κ) = κ, then Lemma 2.5 I shows either f ∈ F1, or F2 (provided that
κ = 1 or 2). If f(κ) 6= κ, then Lemma 2.5 II ensures that f ∈ F3.

Conversely, assume that the multiplicative function f satisfies (5) and belongs to one of the
families Fam1), Fam2) or Fam3).

If f belongs to Fam1), i.e., f ∈ F1 and f(κ) = κ. The functional values in A1), A2) and A3)
imply immediately that f(b2) = b2 (b ∈ N). Incorporating into (5), we get

f(κm2) = κf(m2) + f(κ)− κ = κm2.

By Lemma 2.2 we can write

m2 + n2 = 2t
∏
i

pαi
i

∏
j

q
2βj
j , (15)

where pi ≡ 1 mod 4, qj ≡ 3 mod 4 are distinct primes and αi, βj, t ∈ N. Using the multiplicativity
of f , A1), A2) and A3), we have

κf(m2 + n2) = κf(2t)
∏
i

f(pαi
i )
∏
j

f(q
2βj
j ) = κ2t

∏
i

pαi
i

∏
j

q
2βj
j = κm2 + κn2

= f(κm2) + κf(n2),

showing that f satisfies (4).
The proof of the case where f belongs to the family Fam2) is simpler but similar to that of f

belonging to Fam3) so we show only that of the latter case.
If f belongs to Fam3), the functional values in C1), C2) and C3) imply that f(c2) = 1

for any odd c ∈ N. Using the sum of two squares representation (15), C1), C2), C3) and the
multiplicativity of f , we have

κf(m2 + n2) = κf(2t).

If t = 0, then one of m and n must be odd and the other even; if m is odd and n is even, write
n = 2ab, where b is odd and a ∈ N. By (5), C1), C2), C3), and the multiplicity of f , we have

f(κm2) + κf(n2) = κf(m2) + f(κ)− κ+ κf(22a)f(b2) = f(κ) + κ(2− f(2)) = κ

= κf(m2 + n2),

showing that f satisfies (4). The possibility of even m and odd n is omitted as it is almost the
same.

If t = 1, then both m and n must be odd. By (5), C1), C2) and C3), we have

f(κm2) + κf(n2) = κf(m2) + f(κ)− κ+ κ = κ+ f(κ) = κf(2)

= κf(m2 + n2),

showing that f satisfies (4).
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If t ≥ 2, then both m and n must be even, say, m = 2uv, n = 2xy with odd v, y and u, x ∈ N.
By (5), C1), C2), C3), and the multiplicity of f , we have

f(κm2) + κf(n2) = κf(m2) + f(κ)− κ+ κf(n2) = κf(22u)f(v2) + f(κ)− κ+ κf(22x)f(y2)

= κ(2− f(2)) + f(κ)− κ+ κ(2− f(2)) = κ(2− f(2)) = κf(2t)

= κf(m2 + n2),

showing that f satisfies (4).
The work of Chung [2] corresponds to the cases Fam1) and Fam2) of our Theorem 1.1. If

κ = 1, 2, then F3 is identical with F2. If κ ∈ N\{1, 2}, then F3 is different from both F1 and F2.
For completely multiplicative functions, we have:

Corollary 3.1. Assume that f is a completely multiplicative function. Then f satisfies the functional
equation (4) if and only if f fulfills the condition (5) and the following assertions hold:

(i) f(2) = 2;

(ii) f(p) = p for all primes p ≡ 1 (mod 4);

(iii) f(q) ∈ {−q, q} for all primes q ≡ 3 (mod 4).

Proof. If f satisfies (4), the condition (5) follows immediately from Lemma 2.4 P1). Being
completely multiplicative, the equation (4) reduces to f(m2 + n2) = f(m2) + f(n2). Assertions
(i), (ii), and (iii) follow at once from Lemma 2.1 II.

Conversely, assume that the completely multiplicative function f satisfies (5), (i), (ii), and
(iii). Observe that (5) yields f(κ) = κ, while (i), (ii), and (iii) yield f(b2) = b2 (b ∈ N). Using
Lemma 2.2, write m2 + n2 = 2tpα1

1 · · · p
α`
` q

2β1
1 · · · q2βss , where pi, qj are distinct primes with

pi ≡ 1 mod 4, qj ≡ 3 mod 4. Thus,

κf(m2 + n2) = κf(2)t
∏
i

f(pi)
αi

∏
j

f(qj)
2βj = κ2t

∏
i

pαi
i

∏
j

q
2βj
j

= κm2 + κn2 = f(κ)f(m2) + κf(n2)

= f(κm2) + κf(n2),

i.e., f satisfies the function equation (4).

4 Final remarks

The following remarks are given to us by one of the referees, to whom we are grateful. Note that
the functional equation

κf(n2 +m2) = f(κn2) + κf(m2)

implies
f(κm2) + κf(n2) = f(κn2) + κf(m2),

which gives
f(κn2)− κf(n2) = f(κm2)− κf(m2)
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for all m,n ∈ N. Putting m = 1, we have

f(κn2) = κf(n2) + f(κ)− κ,

and so
κf(n2 +m2) = κf(n2) + κf(m2) + f(κ)− κ,

which is equivalent to

f(n2 +m2) = f(n2) + f(m2) + Aκ, (16)

where Aκ := 1
κ
(f(κ)− κ).

If Aκ = 0, i.e., f(κ) = κ, then the equation (16) becomes to the equation (3) treated by
Chung [2], and the solutions are given by the families F1,F2.

If Aκ 6= 0, i.e., f(κ) 6= κ, then the solutions belong to the family F3 obtained from Lemma
2.5.

Since (16) is a special case of the functional equation

F (n2 +m2 + k) = F (n2) + F (m2) +K (k ∈ N ∪ {0}, K ∈ C), (17)

finding solutions of this last equation is still an open problem worthy of future research. Similar
to (17) is the following functional equation

F (n2 +m2 + k) = F (n)2 + F (m)2 +K (k ∈ N ∪ {0}, K ∈ C), (18)

which was solved for an arithmetic function F : N→ C by Khanh [7] in 2019.
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