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Abstract: In this paper, we define new families of Generalized Fibonacci polynomials and 

Generalized Lucas polynomials and develop some elegant properties of these families. We also 

find the relationships between the family of the generalized k-Fibonacci polynomials and the 

known generalized Fibonacci polynomials. Furthermore, we find new generalizations of these 

families and the polynomials in matrix representation. Then we establish Cassini's Identities for 

the families and their polynomials. Finally, we suggest avenues for further research. 
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1 Introduction 

Fibonacci number sequences have attractive properties and many applications in various branches 

of mathematics [3, 5, 14, 21].  Historically too there have been different approaches to defining 

Fibonacci and Lucas polynomials [7, 9, 11, 13, 20]. 

More recently, Mikkawy and Sogabe [10] defined a new family of k-Fibonacci numbers. 

Then in [12], Özkan et al defined a new family of k-Lucas numbers and developed some 
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properties about them. Falcon and Plaza [4] produced some general k-Fibonacci numbers and 

showed how properties of these numbers can be related to elementary matrix algebra. Bolat and 

Köse [1] also found some important properties about k-Fibonacci numbers.  

This paper is arranged in three parts. In the second part, we outline some pertinent definitions 

and properties. In the third part, we define the new families of Generalized k-Fibonacci 

polynomials and Generalized k-Lucas polynomials. These yield some neat properties of the 

families. We then develop the relationships between the family of Generalized k-Fibonacci 

polynomials and known Generalized Fibonacci polynomials and Generalized k-Lucas 

polynomials and known Generalized Lucas polynomials. We also establish new generalizations 

of these families in matrix representation and prove Cassini's Identities for the families. 

2 Materials and methods 

Definition 1. Generalized Fibonacci polynomials can be defined by 
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If s = 1, then we obtain the classical Fibonacci polynomial sequence. 
 

It is well known that the Fibonacci polynomials and Lucas polynomials are closely related. 
 

Definition 2. Generalized Lucas polynomials can be defined similarly by 
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If s = 1, then we obtain the classical Lucas polynomial sequence. 
 

A Binet formula for 𝑓𝑛(𝑥) is given by  

  𝑓𝑛(𝑥) = 𝑠
𝑟1

𝑛−𝑟2
𝑛

𝑟1−𝑟2
𝑚, (1) 

where 𝑟1 =
𝑥+ √𝑥2+4

2
  and  𝑟2 =

𝑥− √𝑥2+4

2
. 

A Binet formula for 𝑙𝑛(𝑥) is then given by  

  𝑙𝑛(𝑥) = 𝑠(𝑟1
𝑛 + 𝑟2

𝑛), (2) 

where 𝑟1 =
𝑥+ √𝑥2+4

2
  and  𝑟2 =

𝑥− √𝑥2+4

2
. 



150 

3 Generalized polynomials 

Definition 3. Let n and k  0 be natural numbers, then there exist unique numbers m and r  

such that 𝑛 =  𝑚𝑘 +  𝑟 (0 ≤  𝑟 <  𝑘). The generalized k-Fibonacci polynomials 𝑓𝑛
(𝑘)(𝑥) are 

then defined by 

𝑓𝑛
(𝑘)(𝑥) ≔ 𝑠𝑘 (

𝑟1
𝑚 − 𝑟2

𝑚

𝑟1 − 𝑟2
)

𝑘−𝑟

(
𝑟1

𝑚+1 − 𝑟2
𝑚+1

𝑟1 − 𝑟2
)

𝑟

, 

where  𝑟1 =
𝑥+ √𝑥2+4

2
  and  𝑟2 =

𝑥− √𝑥2+4

2
. 

Also, we can find the generalized k-Fibonacci polynomials by matrix methods. Indeed, it is clear 

that 

𝑓𝑛
𝑘−1(𝑥)𝑄2

𝑛 = [
𝐹𝑘𝑛+𝑘+1

(𝑘)
(𝑥) 𝐹𝑘𝑛+𝑘

(𝑘)
(𝑥)

𝐹𝑘𝑛+𝑘
(𝑘)

(𝑥) 𝐹𝑘𝑛+𝑘−1
(𝑘)

(𝑥)
], 

in which 

𝑄2
𝑛 = [

𝐹𝑛+1
(𝑘)

(𝑥) 𝐹𝑛
(𝑘)

(𝑥)

𝐹𝑛
(𝑘)

(𝑥) 𝐹𝑛−1
(𝑘)

(𝑥)
] , 𝑛 ≥ 0. 

We now give some values for the generalized k-Fibonacci polynomials in Table 1. 

 k = 1 k = 2 k = 3 k = 4 

𝐹0
(𝑘)

(𝑥) s 𝑠2 𝑠3 𝑠4 

𝐹1
(𝑘)

(𝑥) 𝑠𝑥 𝑠2𝑥 𝑠3𝑥 𝑠4𝑥 

𝐹2
(𝑘)

(𝑥) 𝑠𝑥2 + 1 𝑠2𝑥2 𝑠3𝑥2 𝑠4𝑥2 

𝐹3
(𝑘)

(𝑥) 𝑠𝑥3 + 2𝑠𝑥 𝑠2𝑥3 + 𝑠2𝑥 𝑠3𝑥3 𝑠4𝑥2 

𝐹4
(𝑘)

(𝑥) 𝑠𝑥4 + 3𝑠𝑥2 + 𝑠 𝑠2𝑥4 + 2𝑠2𝑥2 + 𝑠2 𝑠3𝑥4 + 𝑠3𝑥2 𝑠4𝑥4 

𝐹5
(𝑘)

(𝑥) 𝑠𝑥5 + 4𝑠𝑥3 + 3𝑠𝑥 𝑠2𝑥5 + 3𝑠2𝑥3 + 2𝑠2𝑥 𝑠3𝑥5 + 2𝑠3𝑥3 + 𝑠3𝑥 𝑠4𝑥5 + 𝑠4𝑥3 

Table 1. Some Generalized k-Fibonacci polynomials 

Definition 3, we can obtain the generalized k-Fibonacci polynomials via the generalized 

Fibonacci polynomials. 

 𝐹𝑛
(𝑘)(𝑥) = (𝑓𝑚(𝑥))

𝑘−𝑟
(𝑓𝑚+1(𝑥))𝑟 , 𝑛 = 𝑚𝑘 + 𝑟.   (3) 

If 𝑘 =  1 in equation (3), then we have that 𝑚 =  𝑛 and 𝑟 =  0 so 𝐺𝐹𝑛
(1)

(𝑥) = 𝑓𝑛(𝑥). 

Throughout this paper, let 𝑘, 𝑚 ∈ {1,2,3, … . }. 
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For k = 2, 3, 4 and n, we have the following properties which connect the generalized k-

Fibonacci polynomials and the known generalized Fibonacci polynomials. 

𝐹2𝑛
(2)(𝑥) = 𝑓𝑛

2(𝑥), 

           𝐹2𝑛+1
(2) (𝑥) = 𝑓𝑛(𝑥)𝑓𝑛+1(𝑥), 

                          𝐹2𝑛+1
(2) (𝑥) = 𝑥𝐹2𝑛

(2)(𝑥) + 𝐹2𝑛−1
(2) (𝑥), 

 𝐹3𝑛
(3)(𝑥) = 𝑓𝑛

3(𝑥), 

             𝐹3𝑛+1
(3) (𝑥) = 𝑓𝑛

2(𝑥)𝑓𝑛+1(𝑥), 

              𝐹3𝑛+2
(2) (𝑥) = 𝑓𝑛

2(𝑥)𝑓𝑛+1(𝑥), 

                           𝐹3𝑛+1
(3) (𝑥) = 𝑥𝐹3𝑛

(3)(𝑥) + 𝐹3𝑛−1
(3) (𝑥), 

  𝐹4𝑛
(4)(𝑥) = 𝑓𝑛

4(𝑥), 

              𝐹4𝑛+1
(4) (𝑥) = 𝑓𝑛

3(𝑥)𝑓𝑛+1(𝑥), 

        𝐹4𝑛+2
(4) (𝑥) = 𝑓𝑛

2𝑓𝑛+1
2 (𝑥), 

              𝐹4𝑛+3
(4) (𝑥) = 𝑓𝑛(𝑥)𝑓𝑛+1

3 (𝑥), 

                           𝐹4𝑛+1
(4) (𝑥) = 𝑥𝐹4𝑛

(4)(𝑥) + 𝐹4𝑛−1
(4) (𝑥). 

Theorem 1. For n, we have the following relation 

𝐹𝑘𝑛+1
(𝑘) (𝑥) = 𝑥𝐹𝑘𝑛

(𝑘)(𝑥) + 𝐹𝑘𝑛−1
(𝑘) (𝑥). 

Proof. By using (3), we have 

𝑥𝐹𝑘𝑛
(𝑘)(𝑥) + 𝐹𝑘𝑛−1

(𝑘) (𝑥) = 𝑥𝐹𝑛
𝑘 + (𝐹𝑛−1(𝑥)𝐹𝑛

𝑘−1(𝑥)) 

                                                                 = 𝐹𝑛
𝑘−1(𝑥)(𝑥𝐹𝑛(𝑥) + 𝐹𝑛−1(𝑥)) 

                                                                 = 𝐹𝑛
𝑘−1(𝑥)𝐹𝑛+1(𝑥) 

                                                                 = 𝐹𝑘𝑛+1
(𝑘)

(𝑥). 

From Definition 3, we know that n = mk + r, where m, k  0 natural numbers and 0  r < k.  

For 𝑘 = 1,2, …, let 𝐹−𝑛
(𝑘)

= 0 be. 

 

Theorem 2. (Cassini's Identity) Let 𝐺𝐹𝑛
𝑘(𝑥) represent the generalized Gauss k-Fibonacci 

polynomials. For 𝑛, 𝑘 ≥ 2, the Cassini's Identity 𝐹𝑛
(𝑘)

(𝑥) is as follows: 

𝐹𝑘𝑛+𝑡
(𝑘) (𝑥)𝐹𝑘𝑛+𝑡−2

(𝑘) (𝑥) − (𝐹𝑘𝑛+𝑡−1
(𝑘)

(𝑥))
2

= {𝐹𝑛
2𝑘−2(𝑥)(−1)𝑛(𝑠𝑘), 𝑡 = 1

0 𝑡 ≠ 1
}. 
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Proof. By using (3), we find 

𝐹𝑘𝑛+𝑡
(𝑘) (𝑥)𝐹𝑘𝑛+𝑡−2

(𝑘) (𝑥) − (𝐹𝑘𝑛+𝑡−1
(𝑘)

(𝑥))
2

 

= (𝐹𝑛−1
𝑘−1(𝑥)𝐹𝑛+𝑡(𝑥)𝐹𝑛

𝑘−1(𝑥)) (𝐹𝑛+𝑡−2(𝑥)) − (𝐹𝑛
𝑘−1(𝑥)𝐹𝑛+𝑡−1(𝑥))

2

    

= (𝐹𝑛
𝑘−1(𝑥))

2

(𝐹𝑛+𝑡(𝑥)𝐺𝐹𝑛+𝑡−2(𝑥) − (𝐺𝐹𝑛+𝑡−1(𝑥))
2

) 

= 𝐹𝑛
2𝑘−2(𝑥)(𝐹𝑛+𝑡(𝑥)𝐹𝑛+𝑡−2(𝑥)(𝐹𝑛+𝑡−1(𝑥))2). 

for 𝑡 = 1, 

= 𝐹𝑛
2𝑘−2(𝑥) (𝐹𝑛+𝑡(𝑥)𝐹𝑛+𝑡−2(𝑥)(𝐹𝑛+𝑡−1(𝑥))

2
) 

= 𝐹𝑛
2𝑘−2(𝑥)(−1)𝑛(𝑠2𝑘). 

for 𝑡 ≠ 1, 𝑡 = 𝑚, (𝑚 ∈ 𝑁), 

= 𝐹𝑛
2𝑘−2(𝑥)(𝐹𝑛+𝑚(𝑥)𝐹𝑛+𝑚−2(𝑥)(𝐹𝑛+𝑚−1(𝑥))2) 

= 𝐹𝑛
2𝑘−2(𝑥)(𝐹2𝑛+2𝑚−2

(2)
(𝑥) − 𝐹2𝑚+2𝑛−2

(2)
(𝑥)) = 0. 

For n, we obtain an interesting relation between the known generalized Fibonacci 

polynomials and the generalized k-Fibonacci polynomials 

𝐹𝑛𝑘+𝑡
(𝑘) (𝑥) = 𝐹𝑛

𝑘−𝑡(𝑥)𝐹𝑛+1
𝑡 (𝑥), 

where t = 0, 1, …, k – 1. 

Definition 4. Let n and k  0 be natural numbers, then there exist unique numbers m and r  

such that 𝑛 =  𝑚𝑘 +  𝑟 (0 ≤  𝑟 <  𝑘). The generalized k-Lucas polynomials 𝐿𝑛
(𝑘)(𝑥) are 

defined by 

𝐿𝑛
(𝑘)(𝑥) ≔ 𝑠𝑘(𝑟1

𝑚 + 𝑟2
𝑚)𝑘−𝑟(𝑟1

𝑚+1 + 𝑟2
𝑚+1)𝑟, 

where  𝑟1 =
𝑥+ √𝑥2+4

2
  and  𝑟2 =

𝑥− √𝑥2+4

2
. 

Also, we can find the generalized k-Lucas polynomials by matrix methods. Indeed, it is clear that 

𝐿𝑛
𝑘−1(𝑥)𝜑𝑛,2 = [

𝐿𝑘𝑛+𝑘+1
(𝑘)

(𝑥) 𝐿𝑘𝑛+𝑘
(𝑘)

(𝑥)

𝐿𝑘𝑛+𝑘
(𝑘)

(𝑥) 𝐿𝑘𝑛+𝑘−1
(𝑘)

(𝑥)
], 

in which 

𝜑𝑛,2 = 𝜑𝑛−1,2𝑄2 = [
𝑙𝑛+1(𝑥) 𝑙𝑛(𝑥)

𝑙𝑛(𝑥) 𝑙𝑛−1(𝑥)
] , 𝑄2 = (

𝑥 1
1 0

) , 𝜑0,2 = (
𝑥 2
2 −𝑥

),  

𝑛 ≥ 0. 

  
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From Definition 4, we can obtain the Generalized k-Lucas polynomials via the Generalized 

Fibonacci polynomials. 

 𝐿𝑛
(𝑘)(𝑥) = (𝑙𝑚(𝑥))

𝑘−𝑟
(𝑙𝑚+1(𝑥))𝑟 , 𝑛 = 𝑚𝑘 + 𝑟.   (4) 

If 𝑘 =  1 in equation (4), then we have that 𝑚 =  𝑛 and 𝑟 =  0 so 𝐺𝐿𝑛
(1)(𝑥) = 𝑙𝑛(𝑥). 

Throughout this paper, let 𝑘, 𝑚 ∈ {1,2,3, … . }. 

For k = 2, 3, 4 and n, we have the following properties which connect the Generalized  

k-Fibonacci polynomials and the known Generalized Fibonacci polynomials. 

𝐿2𝑛
(2)(𝑥) = 𝑙𝑛

2(𝑥), 

           𝐿2𝑛+1
(2) (𝑥) = 𝑙𝑛(𝑥)𝑙𝑛+1(𝑥), 

                          𝐿2𝑛+1
(2) (𝑥) = 𝑥𝐿2𝑛

(2)(𝑥) + 𝐿2𝑛−1
(2) (𝑥), 

 𝐿3𝑛
(3)(𝑥) = 𝐿𝑛

3 (𝑥), 

             𝐿3𝑛+1
(3) (𝑥) = 𝑙𝑛

2(𝑥)𝑙𝑛+1(𝑥), 

              𝐿3𝑛+2
(2) (𝑥) = 𝑙𝑛

2(𝑥)𝑙𝑛+1(𝑥), 

                           𝐿3𝑛+1
(3) (𝑥) = 𝑥𝐿3𝑛

(3)(𝑥) + 𝐿3𝑛−1
(3) (𝑥), 

  𝐿4𝑛
(4)

(𝑥) = 𝑙𝑛
4(𝑥), 

              𝐿4𝑛+1
(4) (𝑥) = 𝑙𝑛

3(𝑥)𝑙𝑛+1(𝑥), 

        𝐿4𝑛+2
(4) (𝑥) = 𝑙𝑛

2𝑙𝑛+1
2 (𝑥), 

              𝐿4𝑛+3
(4) (𝑥) = 𝑙𝑛(𝑥)𝑙𝑛+1

3 (𝑥), 

                           𝐿4𝑛+1
(4) (𝑥) = 𝑥𝐿4𝑛

(4)(𝑥) + 𝐿4𝑛−1
(4) (𝑥). 

Theorem 3. For n, we have the following relation 

𝐿𝑘𝑛+1
(𝑘) (𝑥) = 𝑥𝐿𝑘𝑛

(𝑘)(𝑥) + 𝐿𝑘𝑛−1
(𝑘) (𝑥). 

Proof. By using (4), we have 

𝑥𝐿𝑘𝑛
(𝑘)(𝑥) + 𝐿𝑘𝑛−1

(𝑘) (𝑥) = 𝑥𝐿𝑛
𝑘 + (𝑙𝑛−1(𝑥)𝑙𝑛

𝑘−1(𝑥)) 

                                                                 = 𝑙𝑛
𝑘−1(𝑥)(𝑥𝑙𝑛(𝑥) + 𝑙𝑛−1(𝑥)) 

                                                                 = 𝑙𝑛
𝑘−1(𝑥)𝑙𝑛+1(𝑥) 

                                                                 = 𝐿𝑘𝑛+1
(𝑘)

(𝑥).                                                           

 

From Definition 4, we know that n = mk + r, where m, k  0 natural numbers and 0  r < k. 

For 𝑘 = 1,2, …, let 𝐿−𝑛
(𝑘)

= 0. 
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Theorem 4. (Cassini's Identity) Let 𝐺𝐿𝑛
(𝑘)

(𝑥) represent the generalized Gauss k-Lucas 

polynomials. For 𝑛, 𝑘 ≥ 2, the Cassini's Identity 𝐿𝑛
(𝑘)

(𝑥) is as follows: 

𝐿𝑘𝑛+𝑡
(𝑘) (𝑥)𝐿𝑘𝑛+𝑡−2

(𝑘) (𝑥) − (𝐿𝑘𝑛+𝑡−1
(𝑘)

(𝑥))
2

= {𝐿𝑛
2𝑘−2(𝑥)(−1)𝑛+1(𝑥2 + 4)(𝑠2𝑘), 𝑡 = 1

0 𝑡 ≠ 1
}. 

Proof. By using (4), we find 

𝐿𝑘𝑛+𝑡
(𝑘) (𝑥)𝐿𝑘𝑛+𝑡−2

(𝑘) (𝑥) − (𝐿𝑘𝑛+𝑡−1
(𝑘)

(𝑥))
2

 

= (𝐿𝑛−1
𝑘−1 (𝑥)𝐿𝑛+𝑡(𝑥)𝐿𝑛

𝑘−1(𝑥)) (𝐿𝑛+𝑡−2(𝑥)) − (𝐿𝑛
𝑘−1(𝑥)𝐿𝑛+𝑡−1(𝑥))

2

    

= (𝐿𝑛
𝑘−1(𝑥))

2

(𝐿𝑛+𝑡(𝑥)𝐺𝐿𝑛+𝑡−2(𝑥) − (𝐺𝐿𝑛+𝑡−1(𝑥))
2

) 

= 𝐿𝑛
2𝑘−2(𝑥)(𝐿𝑛+𝑡(𝑥)𝐿𝑛+𝑡−2(𝑥)(𝐿𝑛+𝑡−1(𝑥))2). 

for 𝑡 = 1, 

= 𝐿𝑛
2𝑘−2(𝑥) (𝐿𝑛+𝑡(𝑥)𝐿𝑛+𝑡−2(𝑥)(𝐿𝑛+𝑡−1(𝑥))

2
) 

= 𝐿𝑛
2𝑘−2(𝑥)(−1)𝑛+1(𝑥2 + 4)(𝑠2𝑘). 

for 𝑡 ≠ 1, 𝑡 = 𝑚, (𝑚 ∈ 𝑁), 

= 𝐿𝑛
2𝑘−2(𝑥)(𝐿𝑛+𝑚(𝑥)𝐿𝑛+𝑚−2(𝑥)(𝐿𝑛+𝑚−1(𝑥))2) 

= 𝐿𝑛
2𝑘−2(𝑥)(𝐿2𝑛+2𝑚−2

(2)
(𝑥) − 𝐿2𝑚+2𝑛−2

(2)
(𝑥)) = 0. 

Theorem 5. For any integer n, we have 

(𝑥2 + 4)𝐹2𝑛
(2)(𝑥) + 4𝑠2(−1)𝑛 = {

𝑠2(𝑟1
𝑛 + 𝑟2

𝑛)2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑠2(𝑟1
𝑛 − 𝑟2

𝑛)2, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
. 

Proof. From the Binet’s formula of generalized Fibonacci polynomials  

𝐹2𝑛
(2)(𝑥) = 𝑓2𝑛

2 (𝑥) =
𝑠2

(𝑟1
𝑛 − 𝑟2

𝑛)2
{𝑟1

2𝑛 − 2(𝑟1𝑟2)𝑛 + 𝑟2
2𝑛}. 

If n is even, then we get (𝑥2 + 4)𝐹2𝑛
(2)(𝑥) + 4𝑠2 = (𝑠𝑟1

𝑛 + 𝑠𝑟2
𝑛)2. If n is odd, then we have 

(𝑥2 + 4)𝐹2𝑛
(2)(𝑥) − 4𝑠2 = (𝑠𝑟1

𝑛 − 𝑠𝑟2
𝑛)2. 

Let us denote (𝑠𝑟1
𝑛 − 𝑠𝑟2

𝑛)2 by 𝑙𝑛(𝑥). So, we obtain the following equation. 

                                           (𝑥2 + 4)𝐹2𝑛
(2)(𝑥) + 4𝑠2(−1)𝑛 = 𝑙2𝑛

2 (𝑥).                                   

Theorem 6. We have the following equations 

𝐿2𝑛
(2)(𝑥) = 4𝐹2𝑛+2

(2) (𝑥) − 2𝑥𝐹2𝑛+1
(2) (𝑥) + 𝑥2𝐹2𝑛

(2)(𝑥) 

 𝐿2𝑛+2
(2)

(𝑥) = 𝑥2𝐹2𝑛+2
(2)

(𝑥) + 4𝑥2𝐹2𝑛+1
(2)

(𝑥) + 4𝑥2𝐹2𝑛
(2)

(𝑥). 
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Proof. 

𝐿2𝑛
(2)(𝑥) = 𝑙𝑛

2(𝑥) 

𝐹2𝑛+2
(2) (𝑥) = 𝑓𝑛+1

2 (𝑥) 

𝐹2𝑛+1
(2) (𝑥) = 𝑓𝑛(𝑥)𝑓𝑛+1(𝑥) 

𝐹2𝑛
(2)(𝑥) = 𝑓𝑛

2(𝑥) 

The proof is easily seen using the above equations.  

For n, we obtain an interesting relation between the known generalized Lucas polynomials 

and the generalized k-Lucas polynomials 

𝐿𝑛𝑘+𝑡
(𝑘) (𝑥) = 𝐿𝑛

𝑘−𝑡(𝑥)𝐿𝑛+1
𝑡 (𝑥), 

where t = 0, 1, …, k – 1. 

3 Concluding comments 

The relations among the generalized Lucas sequences make these neat relations seem obvious 

since the first column of this table consists of the factorial numbers (Sloane A000142), but they 

do take the interested reader further afield [18]. For instance, by inserting alternating positive and 

negative signs into this series one gets a divergent series which can lead into Borel summation 

techniques [2]. 

 Suggestions for further study follow from [17] where an alternative, but not unrelated, 

approach defined a generalized Fibonacci polynomial by means of  

  



n

k

k

knn x
k

n
uxu

0 !

!
)( , (5) 

with P0 (see below) set as unity for notational convenience, and {un} and {vn} are generalized 

arbitrary order r number sequences defined formally by 

  





r

j

jnj

j

n uPu
1

1 ,)1( n > 0, 

,1nu  n = 0, 

,0nu  n < 0, 

and 







r

j

jnj

j

n vPv
1

1 ,)1(  n ≥ 0, 

,
1





r

j

n

jnv   0 ≤ n < r, 

,0nv  n < 0, 

where the Pj are arbitrary integers and  j are the roots, assumed distinct of the associated 

auxiliary equation 
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



r

j

jr

j

jr xPx
1

1 ,)1(0  

which is associated with the homogeneous arbitrary order linear recurrence relations which the 

generalized Fibonacci numbers satisfy. For example, when r = 2, we have  

2211   nnn uPuPu  

or     211 ,;,1( PPPun   in Horadam’s notation [8]. These are the Lucas fundamental numbers 

[4] and the     211 ,;,2( PPPvn   correspond to the Lucas primordial numbers which can be 

readily shown to satisfy 

,
1





r

j

n

jnv   for all n ≥ 0. 

When ,121  PP  we get the Fibonacci numbers    1 nn Fu  and the ordinary Lucas 

numbers    nn Lu  , the principal properties of which can be found in Hoggatt [6]. It was found 

that the first few generalized Fibonacci polynomial examples of (5) are 

𝑢0(𝑥) = 1 

 = 𝑢0, 

𝑢1(𝑥) = 𝑥 + 𝑃1 

            = 𝑢0𝑥 + 𝑢1, 

𝑢2(𝑥) = 𝑥2 + 2𝑃1𝑥 + 2(𝑃1
2 − 𝑃2) 

             = 𝑢0𝑥2 + 2𝑢1𝑥 + 2𝑢2, 

𝑢3(𝑥) = 𝑥3 + 3𝑃1𝑥2 + 6(𝑃1
2 − 𝑃2)𝑥 + 6(𝑃1

3 − 2𝑃1𝑃2 + 𝑃3) 

 = 𝑢0𝑥3 + 3𝑢1𝑥2 + 6𝑢2𝑥 + 6𝑢3, 

which can be compared with the corresponding cases of 𝑓𝑛(𝑥) in Definition 1 above to find 

corresponding generalizations to relate 𝑢𝑛(𝑥) and 𝑓𝑛(𝑥) and their properties, since it is proved in 

[16] that any polynomial can be expressed in terms of the Fibonacci polynomial in (5).  

We give some values for the generalized k-Lucas polynomials in Table 2, from which Tables 

3 and 4 are drawn in turn. 

 

 0 1 2 3 4 5 6 7 

0 1        

1 1 1       

2 1 2 2      

3 1 3 6 6     

4 1 4 12 24 24    

5 1 5 20 60 120 120   

6 1 6 30  120  360 720 720  

7 1 7 42 210 840 2520 5040 5040 

Table 2. Polynomial Coefficients [Sloane [7] A122851] 
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Sequences 0 1 2 3 4 5 6 7 Sloane [19] 

Diagonal 1 1 2 3 6 11 24 51 A122852 [15] 

Row 1 2 5 16 65 326 1957 13700 A000522 [8] 

Table 3. Diagonal and row sequences 

↓ Partial 

column 

 Sloane 

0 1 2 3 4 5 6 7 8 0! x A000027 

1 1 3 6 10 15 21 28  1! x A230364 

2 2 8 20 40 70 112   2! x A000292 

3 6 30 90 210 420    3! x A000332 

4 24 144 504 1344     4! x A000389 

Table 4. Partial column sequences 

From there one can develop properties corresponding to those in present paper, where we 

have defined new families of generalized k-Fibonacci polynomials and generalized k-Lucas 

polynomials, and proved the corresponding Cassini Identities for these families. 

Acknowledgements 

The authors are grateful to the editor and anonymous referees for helpful suggestions and 

comments. 

References 

[1] Bolat, C., & Köse, H. (2010). On the Properties of k-Fibonacci Numbers. International 

Journal of Contemporary Mathematical Sciences, 22(5), 1097–1105. 

[2] Borel, É. (1899). Mémoire sur les séries divergentes. Annales scientifiques de l'École 

Normale Supérieure. Serie 3, 16(1), 9–131. 

[3] Dikici, R., & Özkan, E. (2003). An application of Fibonacci sequences in groups. Applied 

Mathematics and Computation, 136 (2–3), 323–331. 

[4] Falcon, S., & Plaza, A. (2007). On the Fibonacci k-numbers. Chaos, Solitons & Fractals, 

32(5), 1615–1624. 

[5] Hardy, G. H., & Ramanujan, S. (1917). Asymptotic formulae in combinatory analysis.  

Proceedings of the London Mathematical Society. Series 2, 16(1), 75–115. 

[6] Hoggatt, V. E. Jr. (1969). Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin.  

http://www.numdam.org/item?id=ASENS_1899_3_16__9_0


158 

[7] Hoggatt, V. E, Jr., & Bicknell, M. (1973). Roots of Fibonacci polynomials. The Fibonacci 

Quarterly, 11(3), 271–274. 

[8] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The 

Fibonacci Quarterly, 3(3), 161–176. 

[9] Lucas, E. (1878). Théorie des Fonctions Numériques Simplement Périodiques. American 

Journal of Mathematics, 1, 184–240. 

[10] Mikkawy, M., & Sogabe, T. (2010). A new family of k-Fibonacci numbers. Applied 

Mathematics and Computation. 215, 4456–4461. 

[11] Özkan, E., & Altun, İ. (2019). Generalized Lucas polynomials and relationships between 

the Fibonacci polynomials and Lucas polynomials. Communications in Algebra, 47(10), 

4020–4030. 

[12] Özkan, E., Altun, İ., & Göçer, A. (2017). On Relationship among A New Family of k-

Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers. Chiang Mai Journal of 

Science, 44, 1744–1750. 

[13] Özkan, E., & Taştan, M. (2020). On Gauss Fibonacci polynomials, on Gauss Lucas 

polynomials and their applications. Communications in Algebra, 48(3), 952–960. 

[14] Özkan, E., Taştan, M., & Aydoğdu, A. (2018). 2-Fibonacci polynomials in the family of 

Fibonacci numbers. Notes on Number Theory and Discrete Mathematics, 24 (3), 47–55. 

[15] Rota, G.-C., Kahaner, D., & Oslyzko, A. (1975). Finite Operator Calculus. New York: 

Academic Press. 

[16] Shannon, A. G. (1975). Fibonacci analogs of the classical polynomials. Mathematics 

Magazine, 48(3), 123–130. 

[17] Shannon, A. G., & Deveci, O. (2020). A note on the coefficient array of a generalized 

Fibonacci polynomial. Notes on Number Theory and Discrete Mathematics, 26(4),  

206–212. 

[18] Singh, D. (1952). The numbers L(m,n) and their relations with prepared Bernoulli and 

Eulerian numbers. Mathematics Student, 20(1), 66–70. 

[19] Sloane, N. J. A. (1973). A Handbook of Integer Sequences. New York: Academic Press. 

[20] Taştan, M., & Özkan, E. (2021). On The Gauss K−Fibonacci Polynomials. Electronic 

Journal of Mathematical Analysis and Applications, 9(1), 124–130. 

[21] Yılmaz, N., Aydoğdu, A., & Özkan, E. (2021). Some properties of k-generalized Fibonacci     

Numbers. Mathematica Montisnigri, 50(7), 73–79. 

 


