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1 Introduction

Let a1, a2, . . . , am be positive integers, and let the number of non-negative integer solutions of the
linear Diophantine equation

a1x1 + a2x2 + · · ·+ amxm = n

be denoted by N(a1, a2, . . . , am;n). For the special case when a1 = a2 = . . . = am = 1, it has
been proven in [1] that

N(1, . . . , 1︸ ︷︷ ︸
m

;n) =

(
n+m− 1

m− 1

)
.

Whenm = 2, then there exist explicit formulas forN(a1, a2;n), see the paper [2]. The case when
m = 3 has been studied by Binner [3]. Komatsu [1] has studied the general case.
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We use the Faà di Bruno’s formula to give the expression for N(a1, a2, . . . , am;n) in terms of
the partial Bell polynomials.

Theorem 1.1. Let g(x) = (1− xa1)(1− xa2) · · · (1− xam) =
∑a1+a2+···+am

s=0 θsx
s. Then we have

N(a1, a2, . . . , am;n) =
1

n!

n∑
k=1

(−1)k k!Bn,k(1! θ1, 2! θ2, . . . , (n− k + 1)! θn−k+1). (1)

where Bn,k ≡ Bn,k(x1, x2, . . . , xn−k+1) is the (n, k)-th partial exponential Bell polynomial in the
variables x1, x2, . . . , xn−k+1 which can be computed using the recurrence [5, p. 415]:

Bn,k =
n−k+1∑
i=1

(
n− 1

i− 1

)
xiBn−i,k−1, (2)

where

B0,0 = 1

Bn,0 = 0 for n ≥ 1;

B0,k = 0 for k ≥ 1.

Before proving the above result, we relate the above result to weighted integer compositions.

Relation to weighted integer compositions

Let n be a non-negative integer. Then a k-tuple of non-negative integers (π1, π2, . . . , πk) is said
to be an integer composition of n if π1 + π2 + · · ·+ πk = n. The numbers πi’s are called parts.

Let f : N → R be an arbitrary function. For each possible part size s ∈ N = {0, 1, 2, . . . , },
let f(s) be the weight of part size s. Let

(
k
n

)
f

denote the total weight of all f -weighted integer
compositions of n with k parts, that is,(

k

n

)
f

=
∑

π1+π2+...+πk=n

f(π1) f(π2) · · · f(πk).

Then, interpreting f(s) (s ∈ N) as indeterminates, Eger [6] proved that

k!

n!
Bn,k(x1, x2, . . . , xn−k+1) =

(
k

n

)
f

,

where

f(0) = f(n− k + 2) = f(n− k + 3) = . . . = 0,

f(s) =
xs
s!
, for s ∈ {1, 2, . . . , n− k + 1}.

Our main result translates to the following result:
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Theorem 1.2. We have

N(a1, a2, . . . , an;n) =
n∑
k=0

(−1)k
(
k

n

)
f

,

where

f(0) = f(n− k + 2) = f(n− k + 3) = . . . = 0,

f(s) = θs, for s ∈ {1, 2, . . . , n− k + 1},

where θs is as defined in the statement of Theorem 1.1.

2 Proof of Theorem 1.1

Proof. In [1] it has been proved that the number of non-negative integer solutions of
a1x1 + a2x2 + · · ·+ amxm = n is equal to the coefficient of xn in

1

(1− xa1)(1− xa2) · · · (1− xam)
.

Let f(x) = 1/x and g(x) = (1 − xa1)(1 − xa2) · · · (1 − xam). Using Faà di Bruno’s formula
[4, p. 137] we have

dn

dxn
f(g(x)) =

n∑
k=1

f (k)(g(x)) ·Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
. (3)

Since f (k)(x) = (−1)k k!
xk+1 and g(0) = 1, letting x→ 0 in the above equation gives

N(a1, a2, . . . , am;n)n! =
n∑
k=1

(−1)k k!Bn,k

(
g′(0), g′′(0), . . . , g(n−k+1)(0)

)
,

where g(l)(0) = θl l! by the Maclaurin series expansion of g(x) in Theorem 1.1.

Example 2.1. We use our formula to calculate the number of non-negative integer solutions of
the equation x1 + x2 + x3 + x4 = 4. Our formula should give us the result 35, of course, because
we can apply the formula for N(1, 1, 1, 1; 4), which is a simple binomial coefficient which is
“seven over three” and that is 35.

Theorem 1.1 gives us

N(1, 1, 1, 1; 4) =
1

4!

4∑
k=1

(−1)k k!B4,k(1! θ1, 2! θ2, . . . , (4− k + 1)! θ4−k+1),

where θ1 = −4, θ2 = 6, θ3 = −4 and θ4 = 1 since

g(x) = (1− x)4 = 1− 4x+ 6x2 − 4x3 + x4.
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We use the following values to find the correct answer:

B4,1(x1, x2, x3, x4) = x4,

B4,2(x1, x2, x3) = 4x1 x3 + 3x22,

B4,3(x1, x2) = 6x21 x2,

B4,4(x1) = x41,

which can be computed using the recurrence (2) (see [7] for a Python library for symbolic
mathematics where the partial Bell polynomials are implemented).

The following calculation gives us the required answer:

N(1, 1, 1, 1; 4) =
1

4!
(−1!B4,1(1! θ1, 2! θ2, 3! θ3, 4! θ4) + 2!B4,2(1! θ1, 2! θ2, 3! θ3)

− 3!B4,3(1! θ1, 2!) + 4!B4,4(1! θ1))

=
1

4!
(− 4! θ4 + 2! (4 1! θ1 3! θ3 + 3 (2! θ2)

2)− 3! 6 (1! θ1)
2 2! θ2 + 4! (1! θ1)

4)

=
1

4!
(−4! + 4! · 32 + 4! · 36− 4! · 12 · 24 + 4! · 44) = 35.

Example 2.2. Suppose we wish to calculate the number of non-negative integer solutions of the
equation

x1 + 2x2 + 3x3 + 4x4 = 10.

In this case,

g(x) = (1− x) (1− x2) (1− x3) (1− x4) = 1− x− x2 + 2x5 − x8 − x9 + x10

and thus

θ1 = θ2 = −1, θ3 = θ4 = 0, θ5 = 2, θ6 = θ7 = 0, θ8 = θ9 = −1, θ10 = 1.

Using SymPy, [7] we can compute

B10,1(x1, x2, . . . , x10) = x10,

B10,2(x1, x2, . . . , x9) = 10x1x9 + 45x2x8 + 120x3x7 + 210x4x6 + 126x25,

B10,3(x1, x2, . . . , x8) = 45x21x8 + 360x1x2x7 + 840x1x3x6 + 1260x1x4x5

+ 630x22x6 + 2520x2x3x5 + 1575x2x
2
4 + 2100x23x4,

B10,4(x1, x2, . . . , x7) = 120x31x7 + 1260x21x2x6 + 2520x21x3x5 + 1575x21x
2
4

+ 3780x1x
2
2x5 + 12600x1x2x3x4 + 2800x1x

3
3 + 3150x32x4 + 6300x22x

2
3,

B10,5(x1, x2, . . . , x6) = 210x41x6 + 2520x31x2x5 + 4200x31x3x4 + 9450x21x
2
2x4

+ 12600x21x2x
2
3 + 12600x1x

3
2x3 + 945x52,

B10,6(x1, x2, . . . , x5) = 252x51x5 + 3150x41x2x4 + 2100x41x
2
3 + 12600x31x

2
2x3 + 4725x21x

4
2,

B10,7(x1, x2, x3, x4) = 210x61x4 + 2520x51x2x3 + 3150x41x
3
2,

B10,8(x1, x2, x3) = 120x71x3 + 630x61x
2
2,

B10,9(x1, x2) = 45x81x2,

B10,10(x1) = x101 .

Using Theorem 1.1, similar computation to Example 2.1 gives us 23 as the answer.
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Example 2.3. Suppose we wish to calculate the number of non-negative integer solutions of the
equation

x1 + 2x2 + 3x3 + 4x4 = 8.

In this case, g(x) is the same as in the previous example since the left-hand sides of both equations
are identical, and thus

θ1 = θ2 = −1, θ3 = θ4 = 0, θ5 = 2, θ6 = θ7 = 0, θ8 = θ9 = −1, θ10 = 1.

Using SymPy, we can compute

B8,1(x1, x2, . . . , x8) = x8,

B8,2(x1, x2, . . . , x7) = 8x1x7 + 28x2x6 + 56x3x5 + 35x24,

B8,3(x1, x2, . . . , x6) = 28x21x6 + 168x1x2x5 + 280x1x3x4 + 210x22x4 + 280x2x
2
3,

B8,4(x1, x2, . . . , x5) = 56x31x5 + 420x21x2x4 + 280x21x
2
3 + 840x1x

2
2x3 + 105x42,

B8,5(x1, x2, x3, x4) = 70x41x4 + 560x31x2x3 + 420x21x
3
2,

B8,6(x1, x2, x3) = 56x51x3 + 210x41x
2
2,

B8,7(x1, x2) = 28x61x2,

B8,8(x1) = x81.

Using Theorem 1.1, similar computation to Example 2.1 gives 15 as the answer.

Example 2.4. Suppose we wish to calculate the number of non-negative integer solutions of the
equation

x1 + 2x2 + 3x3 + 4x4 = 12.

In this case, g(x) is the same as in the previous example and thus

θ1 = θ2 = −1, θ3 = θ4 = 0, θ5 = 2, θ6 = θ7 = 0, θ8 = θ9 = −1, θ10 = 1.

Using SymPy, we can compute

B12,1(x1, x2, . . . , x12) = x12,

B12,2(x1, x2, . . . , x11) = 12x1x11 + 66x10x2 + 220x3x9 + 495x4x8 + 792x5x7 + 462x26,

B12,3(x1, x2, . . . , x10) = 66x21x10 + 660x1x2x9 + 1980x1x3x8 + 3960x1x4x7 + 5544x1x5x6

+ 1485x22x8 + 7920x2x3x7 + 13860x2x4x6

+ 8316x2x
2
5 + 9240x23x6 + 27720x3x4x5 + 5775x34,

B12,4(x1, x2, . . . , x9) = 220x31x9 + 2970x21x2x8 + 7920x21x3x7 + 13860x21x4x6 + 8316x21x
2
5

+ 11880x1x
2
2x7 + 55440x1x2x3x6 + 83160x1x2x4x5 + 55440x1x

2
3x5

+ 69300x1x3x
2
4 + 13860x32x6 + 83160x22x3x5 + 51975x22x

2
4

+ 138600x2x
2
3x4 + 15400x43,

B12,5(x1, x2, . . . , x8) = 495x41x8 + 7920x31x2x7

+ 18480x31x3x6 + 27720x31x4x5 + 41580x21x
2
2x6

+ 166320x21x2x3x5 + 103950x21x2x
2
4 + 138600x21x

2
3x4 + 83160x1x

3
2x5

+ 415800x1x
2
2x3x4 + 184800x1x2x

3
3 + 51975x42x4 + 138600x32x

2
3,
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B12,6(x1, x2, . . . , x7) = 792x51x7 + 13860x41x2x6 + 27720x41x3x5 + 17325x41x
2
4

+ 83160x31x
2
2x5 + 277200x31x2x3x4 + 61600x31x

3
3 + 207900x21x

3
2x4

+ 415800x21x
2
2x

2
3 + 207900x1x

4
2x3 + 10395x62,

B12,7(x1, x2, . . . , x6) = 924x61x6 + 16632x51x2x5 + 27720x51x3x4 + 103950x41x
2
2x4

+ 138600x41x2x
2
3 + 277200x31x

3
2x3 + 62370x21x

5
2,

B12,8(x1, x2, . . . , x5) = 792x71x5 + 13860x61x2x4 + 9240x61x
2
3 + 83160x51x

2
2x3 + 51975x41x

4
2,

B12,9(x1, x2, x3, x4) = 495x81x4 + 7920x71x2x3 + 13860x61x
3
2,

B12,10(x1, x2, x3) = 220x91x3 + 1485x81x
2
2,

B12,11(x1, x2) = 66x101 x2,

B12,12(x1) = x121 .

Using Theorem 1.1, similar computation to Example 2.1 gives 34 as the answer.
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