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Abstract: The original version of the Monkey and Coconuts Problem describes a hypothetical
situation where five sailors and a monkey are trapped on an island and plan on equally sharing
coconuts. The number of coconuts turns out to be one more than a multiple of 5. The first sailor
tosses one coconut to the monkey, and then takes his equal share out of the pile. Each subsequent
sailor finds the number of remaining coconuts to be one more than a multiple of 5, and repeats
this process one at a time. After the last sailor has tossed one coconut to the monkey, he too
takes his share. The number of coconuts that remain at this stage is a multiple of 5, and is shared
equally by the five sailors. In a variation of the original problem, the number of coconuts that
remain after the fifth sailor has had his share is again one more than a multiple of 5. Therefore,
one coconut is again tossed to the monkey before the remaining pile can be equally distributed
among the five sailors. The problem is to determine the least number of coconuts, and the final
share for each sailor in each version.

We find explicit solutions for both the original version and the variation in the general case of
n sailors in which at each stage r coconuts are tossed to the monkey. Even more generally, we
also investigate the two versions when the n sailors leave r1, . . . , rn coconuts to the monkey.
Keywords: Linear Diophantine equations, Continued fractions.
2010 Mathematics Subject Classification: 00A08, 97A20.

1 The problem

The Monkey and Coconuts Problem is possibly one of the most well-known, and one of the most
worked-on problem in recreational mathematics. The American mathematician Martin Gardner,
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best known for creating and sustaining general interest in recreational mathematics for a large part
of the 20th century, principally through his Scientific American “Mathematical Games” columns
from 1956 to 1981, ranks this problem among his favourites according to an interview in [2] with
his son.

Figure 1. Martin Gardner (1914–2010)
Photo credit: Elliott Erwitt/Magnum Photos [2]

The problem is widely believed to trace its origin as “Coconuts” in a 1926 issue of The Saturday
Evening Post by Ben Ames Williams [16].

Five men and a monkey were shipwrecked on a desert island, and they spent the first
day gathering coconuts for food. Piled them all up together and then went to sleep
for the night.

But when they were all asleep one man woke up, and he thought there might be a
row about dividing the coconuts in the morning, so he decided to take his share. So
he divided the coconuts into five piles. He had one coconut left over, and gave it to
the monkey, and he hid his pile and put the rest back together.

By and by, the next man woke up and did the same thing. And he had one left over
and he gave it to the monkey. And all five of the men did the same thing, one after
the other; each one taking the fifth of the coconuts in the pile when he woke up, and
each one having one left over for the monkey. And in the morning they divided what
coconuts were left, and they came out in five equal shares. Of course each one must
have known that there were coconuts missing; but each one was guilty as the others,
so they didn’t say anything. How many coconuts were there in the beginning?

However, Gardner in [6] writes that “Williams did not invent the coconut problem. He merely
altered the problem to make it more confusing. The older version is the same except that in
the morning, when the final division is made, there is again a final coconut for the monkey; in
Williams’s version, the division comes out even.”
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A common method of solution to this problem is to formulate a linear Diophantine equation
involving the number of coconuts and the equal share of each man in the morning, and then
employ continued fractions to complete the solution. If N denotes the number of coconuts, then
it is easily verified that the five men leave
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coconuts after taking their “share” at night. So if a were to denote the number of coconuts
received by each man in the morning, we have

1024N − 15625a = 8404. (2)

The continued fraction expansion for 15625

1024
is [15, 3, 1, 6, 2, 1, 3, 2, 1], as can be seen by repeated

application of the division algorithm to compute the gcd. Hence the convergents to 15625
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The penultimate convergent gives rise to a particular solution of eqn. (2):

N0 = 8404× 10849 = 91174996, a0 = 8404× 711 = 5975244.

The general solution of eqn. (2) is

(N, a)∈{(91174996+15625t, 5975244+1024t) : t ∈ Z}={(3121+15625t, 204+1024t) : t ∈ Z}.

Thus the least number of coconuts is 3121, and the corresponding share of coconuts for each man
is 204.

In order to solve the original problem, in which there is a coconut left over in the morning
after dividing into five equal shares, we must have 1024N − 8404

3125
≡ 1(mod 5). Again, if a were

to denote the number of coconuts received by each man in the morning, we have

1024N − 15625a = 11529. (3)

The general solution of eqn. (3) is

(N, a) ∈ {(125078121+15625t, 8197119+1024t) : t ∈ Z} = {(15621+15625t, 1023+1024t) : t ∈ Z}.

Thus the least number of coconuts is 15621, and the corresponding share of coconuts for each man
is 1023.

Both versions of the Monkey and Coconuts Problem have been source of many interesting
articles, and have found a place in books [3, 5, 6, 10–12] and articles [1, 4, 7, 9, 13–15].
Kirchner [8] discusses a generalization of the problem in which there are n sailors, with the
first sailor discarding r1 coconuts to make the division come out even and then taking his share.
This process is repeated, with the i-th sailor discarding ri coconuts and then taking 1/n of what
remains. After the last sailor has taken his share, the sailors discard rn+1 coconuts to make the
division come out even and take an equal share of the remaining coconuts. Thus both versions of
the problem correspond to the case where n = 5 and ri = 1 for 1 ≤ i ≤ 5; r6 equals 1 in the
original version and 0 in the Williams version.
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2 The solutions

We consider the following generalization to the Monkey and Coconuts Problem. We assume that
there are n sailors, and each discards a fixed number r of coconuts to make the division come out
even. We denote by ak the “share” of the k-th sailor at night, and by a the common share of the
sailors in the morning. For the original version of the problem, r coconuts are discarded in the
morning before the division comes out even whereas in the Williams version the coconuts may
be divided into n equal piles.

We use the argument above to find a solution to the generalized problems. For the case of N
coconuts and n sailors, with r coconuts left over at each stage, the number of coconuts left by the
sailors follows the sequence

n− 1

n
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The number of coconuts left by the k-th sailor is given by(
n− 1

n

)k

N −

(
n− 1

n
+

(
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+ · · ·+
(
n− 1

n

)k
)
r. (4)

When k = n, a little simplification yields

(n− 1)nN − (n− 1)
(
nn − (n− 1)n

)
r

nn
.

If each sailor receives a coconuts in the morning, we have the equation

(n− 1)nN − nn+1a = (n− 1)
(
nn − (n− 1)n

)
r (5)

in the Williams version. Note that the special case n = 5 and r = 1 gives eqn. (2).

For the original version of the problem we are led to the equation

(n− 1)nN − nn+1a =
(
nn+1 − (n− 1)n+1

)
r. (6)

The special case n = 5 and r = 1 gives eqn. (3).
If we were to follow the methods adopted in the special cases, we would require the continued

fraction expansion of nn+1

(n− 1)n
. While this is easily done for any specific value of n, such an

expansion seems infeasible in general, as a function of n. However, there is a different, more
direct and much simpler solution to eqn. (5) and eqn. (6).

Rearranging the terms in eqn. (5) and simplifying gives

(n− 1)n
(
N + (n− 1)r

)
= nn

(
na+ (n− 1)r

)
. (7)

Since gcd((n−1)n, nn) = 1, from eqn. (7) we have nn |
(
N+(n−1)r

)
. ThusN = λnn−(n−1)r,

λ ∈ N. By substituting this value of N in eqn. (7), na = λ(n− 1)n − (n− 1)r, λ ∈ N. The last
equation requires λ ≡ (−1)n−1r (mod n). We record the solution in

N = λnn − (n− 1)r, a =
λ(n− 1)n − (n− 1)r

n
, λ ≡ (−1)n−1r (mod n), λ ∈ N. (8)
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Rearranging the terms in eqn. (6) and simplifying gives

(n− 1)n
(
N + (n− 1)r

)
= nn+1(a+ r). (9)

Since gcd((n − 1)n, nn+1) = 1, from eqn. (9) we have nn+1 |
(
N + (n − 1)r

)
. Thus,

N = λnn+1 − (n− 1)r, λ ∈ N. By substituting this value of N in eqn. (9), a = λ(n− 1)n − r.
We record the solution in

N = λnn+1 − (n− 1)r, a = λ(n− 1)n − r, λ ∈ N. (10)

There is a slightly different approach to this generalization of the Monkey and Coconuts
Problems. Instead of using the sequence of coconuts left over by the sailors as the starting point,
we derive an expression for N in terms of successive ak’s and r, ending with an expression for
N in terms of a and r. We then use modular arithmetic to derive the expressions in eqn. (10) and
eqn. (8).

The original problem may be formulated by the system of equations

N − a1 − a2 − · · · − ak−1 − (k − 1)r = nak + r (1 ≤ k ≤ n+ 1), (11)

where an+1 = a. Taking the difference of any two successive equations, for k ∈ {1, . . . , n + 1}
we have

(nak+r)−(nak−1+r) =
(
N−a1−· · ·−ak−1−(k−1)r

)
−
(
N−a1−· · ·−ak−2−(k−2)r

)
= −ak−1−r.

Thus, we have the simplified system of equations

(n− 1)ak−1 = nak + r (1 ≤ k ≤ n+ 1), (12)

where an+1=a as before.Starting with N=na1 + r and repeatedly using ak−1=
n

n− 1
ak+

r

n− 1
leads to

N =
nn+1

(n− 1)n
a+

(
nn+1 − (n− 1)n+1

(n− 1)n

)
r.

This is eqn. (6).
The solution we provided for both eqn. (5) and eqn. (6) was made possible by a happy co-

incidence of rearrangement of terms that led to a factorization and consequent solution. A more
general method to solve these equations is by using congruences.

To solve eqn. (6), reduce modulo nn+1 to get (n− 1)nN ≡ −(n− 1)n+1r (mod nn+1). Since
gcd(n − 1, n) = 1, N ≡ −(n − 1)r (mod nn+1), so that N = λnn+1 − (n − 1)r, λ ∈ N.
Substituting in eqn. (6), we get a = λ(n− 1)n − r, λ ∈ N. This is eqn. (10).

Williams’s version of the problem is formulated by eqn. (11) and eqn. (12), with the right-
hand side of last equation (corresponding to k = n + 1) in each having r = 0. As in the case
of the original version, starting with N = na1 + r and repeatedly using ak−1 =

n

n− 1
ak+

r

n− 1
leads to eqn. (5).

To solve equation eqn. (5), reduce modulo nn to get (n − 1)nN ≡ −(n − 1)n+1r (mod nn).
Since gcd(n − 1, n) = 1, N ≡ −(n − 1)r (mod nn), so that N = λnn − (n − 1)r, λ ∈ N.
Substituting in eqn. (6), we get na+ (n− 1)r = λ(n− 1)n, λ ∈ N. Since gcd(n− 1, n) = 1, we
have (n− 1) | a. Substitute a = (n− 1)b in the last equation and divide through by n− 1 to get
λ ≡ (−1)n−1r (mod n). This is eqn. (8).
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3 Remarks on a further generalization

The generalization of the Monkey and Coconuts Problem that we have discussed thus far lends
itself to an obvious extension, that of non-uniformity in the number of coconuts to be thrown
away by each sailor. Thus, we may assume that the k-th sailor needs to throw away rk coconuts
in order to be able to equally divide the pile of coconuts into n parts of ak coconuts. This is the
problem discussed by Kirchner [8]; our discussion is the special case where rk = r for 1 ≤ k ≤ n.
Further, we have rn+1 = r in the original version and rn+1 = 0 in the Williams version. This
generalization does not lead to a neat solution, as we shall presently see.

This generalized problem may be formulated by the system of equations

N − (a1 + · · ·+ ak−1)− (r1 + · · ·+ rk−1) = nak + rk (1 ≤ k ≤ n+ 1), (13)

and by taking the difference of any two successive equations, for k ∈ {1, . . . , n+1}, the simplified
system of equations

(n− 1)ak−1 = nak + rk (1 ≤ k ≤ n+ 1). (14)

Starting with N = na1 + r1 and repeatedly using ak−1 =
n

n− 1
ak+

rk
n− 1

leads to

N =
nn+1

(n− 1)n
a+

n+1∑
k=1

(
n

n− 1

)k−1

rk,

or to
(n− 1)nN − nn+1a = nnrn+1 + nn−1(n− 1)rn + · · ·+ (n− 1)nr1. (15)

The special case rk = r for k ∈ {1, . . . , n + 1} is eqn. (6) and the special case rk = r for
k ∈ {1, . . . , n}, rn+1 = 0 is eqn. (5).

Eqn. (15) is a linear Diophantine equation in the variables N and a, and can be solved by

using the continued fraction expansion for nn+1

(n− 1)n
but only when specific values of r1, . . . , rn+1

are given. The methods that were used in the special cases we considered in this paper do not
apply in this most general case. Kirchner [8] formulates the problem as a difference equation,
and then provides a solution which is neither in closed form nor even computationally easy to
evaluate, as is to be expected in this most general case.

We close by summarizing the results of this paper.

Theorem 3.1. Suppose the n sailors toss away r1, . . . , rn coconuts in order to form n equal piles
of coconuts, and let rn+1 denote the number of coconuts tossed away in the morning in order to
again form n equal piles of coconuts. Then the number N of coconuts and the equal share a of
coconuts left for each sailor satisfy the equation

(n− 1)nN − nn+1a = nnrn+1 + nn−1(n− 1)rn + · · ·+ (n− 1)nr1.

In the original version, where rk = r for k ∈ {1, . . . , n+ 1}, this equation reduces to

(n− 1)nN − nn+1a =
(
nn+1 − (n− 1)n+1

)
r,

with solutions given by

N = λnn+1 − (n− 1)r, a = λ(n− 1)n − r, λ ∈ N.
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In the Williams version, where rk = r for k ∈ {1, . . . , n} and rn+1 = 0, this equation reduces to
(n− 1)nN − nn+1a = (n− 1)

(
nn − (n− 1)n

)
r, with solutions given by

N = λnn − (n− 1)r, a =
λ(n− 1)n − (n− 1)r

n
, λ ≡ (−1)n−1r (mod n), λ ∈ N.
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