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Abstract: We prove that m? — p¥ is not a square, if n = p*m? is an odd perfect number with
special prime p, under the hypothesis that o(m?)/p* is a square. We are also able to prove the
same assertion without this hypothesis. We also show that this hypothesis is incompatible with
the set of assumptions (m? — p* is a power of two ) A (p is a Fermat prime). We end by stating
some conjectures.
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1 Introduction

Let o(z) denote the sum of the divisors of x € N, the set of positive integers. Denote the
deficiency [13] of x by D(z) = 2z — o(x), and the sum of the aliquot divisors [14] of = by
s(x) = o(x) — x. Note that we have the identity D(x) + s(z) = .

If a positive integer n is odd and o(n) = 2n, then n is said to be an odd perfect number [17].
Euler proved that an odd perfect number, if one exists, must have the form n = pFm?, where p is
the special prime satisfying p = £ =1 (mod 4) and ged(p, m) = 1.
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Descartes, Frenicle, and subsequently Sorli conjectured that £ = 1 always holds [1]. Sorli
conjectured k£ = 1 after testing large numbers with eight distinct prime factors for perfection
[15]. Dris [7], and Dris and Tejada [12], call this conjecture as the Descartes—Frenicle—Sorli
Conjecture, and derive conditions equivalent to k£ = 1.

Since m is odd, then m? = 1 (mod 4). Likewise, p = k = 1 (mod 4), which implies that
pF =1 (mod 4). It follows that m? — p* = 0 (mod 4). Since
2m?
k
< —_—
Pe3
(by a result of Dris [8]), we know a priori that
k
2 kP
— > i
m°—p 5

so that we are sure that m? — p¥ > 0. In particular, since m? — p* = 0 (mod 4), we infer that
m? —pF > 4.
The index i(p) of the odd perfect number n = p*m? at the prime p is then equal to
o(m?) m? D(m?) s(m?)

i) === = o(p")/2 ~ s(F)  D(F)/2

The term index of an odd perfect number (at a certain prime) was coined by Chen and Chen [4].

= ged(m?, o(m?)).

In this paper, we will refer continually to the following result by Broughan et al., which we
will state without proof:

Lemma 1.1 ([2, Lemma 8, p. 7]). If n = p*m? is an odd perfect number and o(m?)/p* is a
square, then k = 1 holds.

2  Summary

We now present a summary of our results in this section.
The first proposition allows us to rule out m? — p* = s% (where s > 2), under the assumption
that o(m?)/p* is a square.

Theorem 2.1. If n = p*m? is an odd perfect number and o(m?)/p" is a square, then m? — pF is
not a square.

In the second proposition, we remove the requirement that o(m?)/p” is a square and prove
unconditionally that m? — p* is not a square, with some help from MSE user FredH (https:
//math.stackexchange.com/users/82711).

Theorem 2.2. If n = p*m? is an odd perfect number, then m? — p* is not a square.

Finally, in the third proposition, we use the hypothesis that o(m?)/p* is a square to prove that
m? — p” is not a power of two when p is a Fermat prime.

Theorem 2.3. If n = p*m? is an odd perfect number and o(m?)/p* is a square, then either

m? — pk £ 2241 for integers t > 1 or p is not a Fermat prime.
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3 A proof of Theorem 2.1

Suppose that n = p*m? is an odd perfect number with special prime p, and that m? — p* = 52,

for some s > 2.
Then m? — s? = p* = (m + s)(m — s), so that we obtain

PPV =m+s

p'=m—s
where v is a positive integer satisfying 0 < v < (k — 1) /2. It follows that we have the system

pk—v + pv — pv(pk—Qv + 1) = 29m

pk—v o pv — pv(pk—Qv o 1) = 925

Since p is a prime satisfying p = 1 (mod 4) and ged(p, m) = 1, from the first equation it
follows that v = 0, so that we obtain

pF+1=2m
pF—1=2s
k
which yields m = pTH < pk.
Lastly, note that the inequality p < m has been proved by Brown [3], Dris [6], and Starni [16],
so that we are faced with the inequality p < m < p*. This implies that k& > 1.
However, by assumption we have that o(m?)/p" is a square. This implies by Lemma 1.1 that
k =1, a clear contradiction.
This ends the proof of Theorem 2.1. [

Remark 3.1. The following shorter proof for Theorem 2.1 was communicated by a referee.
First, since a(m?)/p* is a square by assumption, then k = 1 by Lemma 1.1.

k

Then m? — p* = m? — p, and it is straightforward to show that m?> — p = s for s > 2 is

impossible: This would imply m = (p + 1)/2, which contradicts p < m.

4 A proof of Theorem 2.2

The following proof is lifted verbatim from [10]:

Here’s a way to finish the proof without appealing to any conjecture.

If n = p*m? is a perfect number with ged(p, m) = 1, we have o(p*)o(m?) = 2pFm?2. We
know that o(p*) = (p*** — 1)/(p — 1) and we have shown in Theorem 2.1 that m = (p* + 1)/2,
so we can conclude that

200" = Do(m?) = (p = p* (" + 1)% (+)
Consider the GCD of p**! — 1 with the right-hand side:
ged (P =1 (p — D" (0" +1)%) < (p — D ged (@™ — 1,p" +1)%,

since p” is coprime to p**1 — 1.
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Noticing that p*** —1=p(p* +1)— (p+1), we find ged (p* T — 1, p*+1) = ged(p+1, p* +1),
which is p + 1 because k is odd. Thus ged(p*™! — 1, (p — 1)p*(p* +1)?) < (p — 1)(p + 1)

Since k£ = 1 (mod 4) and we have shown in Theorem 2.1 that k£ > 1, we have k > 5. If (x)
holds, the left-hand side of the inequality must be p**! — 1, which is then greater than p°. But the
right-hand side is less than p?, so this is impossible.

This completes the proof of Theorem 2.2. O]

5 A proof of Theorem 2.3

Suppose that n = p*m? is an odd perfect number with special prime p, and that o(m?)/p" is a
square. We show that the assumption (m? — p* = 22+1 ¢ > 1) A (pis a Fermat prime) shall
contradict Lemma 1.1.

(The following proof is adapted from the proof of Theorem 5 in [11].)

Assume to the contrary that m? — pk = 22+1 for some integer ¢ > 1, and that p is a Fermat
prime. This means that p = 2" 4 1 for some integer 7 > 2. Since p is a Fermat prime, we have
r = 2!, for some integer [ > 1. In other words, p = 22" 4+ 1 is a Fermat prime.

Now, note that it is trivial to prove that
31o2 -ty =Pt
5

By assumption, o(m?)/p” is a square, which implies that k& = 1. It follows that
m> —p= m2 — (221 + 1) — 921

from which we get m? — 22° = 22+1 4 1 which implies that 3 | (m? — 221). This means that
31m?, sincel > 1 and 3 ¢ 22",

But we know that 3 | (p + 1)/2 | m?. This contradicts 3 f m?.

This finishes the proof of Theorem 2.3. [

Remark 5.1. The divisibility constraint (p + 1)/2 | m? is true in general since
(p+1)=0a(p) | o(p") | 2m>
follows from k =1 (mod 4), ged(p*, o(p*)) = 1, and the equation
k

o(p®)o(m?) = o(p*m?) = o(n) = 2n = 2p"m?>.

6 Concluding remarks and future research

Actually, more stringent conditions on m? — p* can be derived when o(m?)/p* is a square. Since
o(m?)/p* is always odd, and by assumption it is a square, then since p = k = 1 (mod 4) holds,
we know that o(m?) = 1 (mod 4) also holds. This last congruence is known to hold if and only
if p = k (mod 8) (see [5,9]). Since by assumption o(m?)/p* is a square, we obtain k = 1
by Lemma 1.1. In particular, we know that p* = 1 (mod 8). But we also know that m is odd.
Therefore, we infer that m? = 1 (mod 8). It follows that m? — p* = 0 (mod 8).

What follows is an elementary attempt to rule out m? — p* = 8.
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Lemma 6.1. If n = p*m? is an odd perfect number with special prime p and o(m?)/p* is a
square, then m?* — p* # 8.

Proof. Let n = p*m? be an odd perfect number with special prime p. Suppose that o(m?)/p” is
a square.
Assume to the contrary that m? — p¥ = 8. Subtract 9 from both sides, then transfer p* to the
right-hand side:
m?—9=pF—1,

(m+3)(m—3) = p~ — 1.

This last equation implies that, in general, we have the divisibility constraint (m+3) | (p*—1).

This divisibility constraint then implies that (m + 3) < (p* — 1), from which we obtain
m<m+4<pk.

Lastly, note that the inequality p < m has been proved by Brown [3], Dris [6], and Starni [16],
so that we are faced with the inequality p < m < p*. But this contradicts Lemma 1.1, so we are
done.

This ends the proof of Lemma 6.1. [

We end this section with the following conjectures, which we leave for other researchers to
investigate.

Conjecture 6.2. If n = p*m? is an odd perfect number and o(m?) /p" is a square, then m?* — p*
is not a cube.

Conjecture 6.3. If n = p*m? is an odd perfect number, then m? — p* is not a cube.
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