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Abstract: In this note we consider identities in the alphabet X = {x, y}. This note is self-
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1 Introduction and preliminaries

Section 4 of the recent paper by Geroldinger and Schwab [2] is devoted to the study of non-unique
factorizations in a class of non-commutative monoids {Bn}n>1. The monoids Bn, n ∈ N, where
N denotes the set of nonnegative integers, are defined by the monoid presentation:

Bn = 〈a, b | ba = bn〉.

The elements of Bn are words of the form akbm for k,m ∈ N with the understanding that
a0 = b0 = 1. The monoid B0 is the bicyclic monoid which plays a very important role in the
structural theory of semigroups. The multiplication in B0 is given by the rule

86



akbm · arbs =

{
akbm−r+s if m ≥ r

ak−m+rbs if m < r.

If n > 0, then the multiplication in Bn is defined by:

akbm · arbs =

{
ak+rbs if m = 0;

akbm+(n−1)r+s if m > 0.

The identity (see [1])

(I) xyyxxyxyyx ≈ xyyxyxxyyx, (xy2x2yxy2x ≈ xy2xyx2y2x)

called Adjan’s identity, is the first known and the shortest nontrivial identity satisfied in the
bicyclic monoid B0. It is known that (I) and the identity

(II) xyyxxyyxxy ≈ xyyxyxyxxy (xy2x2y2x2y ≈ xy2xyxyx2y)

are the only identities in the alphabet {x, y} of length 10 satisfied in the bicyclic monoid B0.
Now, we present some notations, definitions and remarks that are used throughout this paper.

IfX is a given finite set (called the set of alphabet), x ∈ X , and v is a word whose letters belong to
X then nx(v) denotes the number of occurrences of x in v, and `(v) =

∑
x∈X nx(v) is called the

length of v. A pair of words (v, w) is called balanced if nx(v) = nx(w) for all x ∈ X . A mapping
σ : X → S, where S is a semigroup, can be extended in a unique way to a homomorphism of
X+ (the free semigroup generated by X) to S, called a substitution by elements of S, denoted
again by σ. An identity v ≈ w (v, w ∈ X+) for (or, satisfied in) the semigroup S is a pair
(v, w) ∈ X+ ×X+ such that σ(v) = σ(w) for all substitutions by elements of S. An identity
v ≈ w is called balanced if the pair of words (v, w) is balanced. In this case `(v) = `(w) is called
the length of the identity v ≈ w. If v ≈ w is an identity for S then the identity uvu′ ≈ uwu′

satisfied in S, where u, u′ ∈ X∗ (X∗ being X+ adjoined by the empty word) is called a simple
consequence of v ≈ w (u and u′ are called prefix and suffix, respectively, of the words uvu′ and
uwu′). The relation ≈ is an equivalence relation on the set X+. The set of its equivalence classes
is the identities partition for S, denoted by PS .

In this note we will consider the case X = {x, y} and S = Bn with n > 0. The problem
is to give characterizations of identities in Bn (n > 0). Shneerson [5] solved it (even in case of
an arbitrary finite set X): v ≈ w is an identity satisfied in Bn (n > 0) if and only if v = uv′,
w = uw′, where u is a prefix of v of the smallest length that contains both variables x and y,
and the words v′ and w′ are equal in the free commutative monoid over the alphabet X = {x, y}.
Pastijn [3] solved this problem if n = 0 in all its generality (X being countable infinite set) in
three distinct ways, and Shleifer [4] studied also (only ifX = {x, y}) identities forB0 and created
such identities using computer assistance.

The purpose of this note is to reach the above Shneerson’s characterization gradually, if
X = {x, y}. It is straightforward to see that Theorems 3.1 and 3.2 of Section 3 express this
fact. In preparation we used only a few identities (Section 2).
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2 The identities (Ai,j)

Since Bn (for all n ∈ N) contains a copy of the infinite cyclic semigroup, any identity v ≈ w

for Bn is balanced. From the multiplication defined in Bn it follows that if v ≈ w is an identity
satisfied in Bn then the first letter of v and w coincide. We will consider identities with the first
letter x; changing the two letters x and y between them in each of the words of the identity v ≈ w

does not lead to a new identity in our convention. If n > 0 then the right cancellation law holds
in the set of all identities for Bn because the monoid Bn (n > 0) is right cancellative

Proposition 2.1. For any positive integers i ≥ j and n > 0,

(Ai,j) xyi+1x ≈ xyjxyi−j+1 ((A′i,j) yxi+1y ≈ yxjyxi−j+1)

is an identity satisfied in Bn.

Proof. To prove that (Ai,j) is an identity for Bn (n > 0) we consider the substitution y = akbm,
x = arbs. Then

(a) y2x =

{
a2k+rbs if m = 0

akb2m+(n−1)k+(n−1)r+s if m > 0,

and

(b) yxy =


a2k+r if m = 0 and s = 0

ak+rbs+(n−1)k if m = 0 and s > 0

akb2m+(n−1)k+(n−1)r+s if m > 0.

Since y2x = yxy in the cases m > 0 and m = 0 = s, we will consider hereinafter m = 0, s > 0.
Then

xyi+1x = xyi−1(y2x) = arbsa(i−1)ka2k+rbs = arbsa(i+1)k+rbs = arb2s+(n−1)[(i+1)k+r],

and
xyixy = xyi−1(yxy) = arbsa(i−1)kak+rbs+(n−1)k = arbsaik+rbs+(n−1)k =

arb2s+(n−1)[(i+1)k+r].

So, (Ai,j) is an identity satisfied in Bn (n > 0) if i = j .
Now, the following sequence of identities satisfied in Bn, n > 0,

xyi+1x ≈ xyixy ≈ xyi−1xy2 ≈ xyi−2xy3 ≈ · · · ≈ xyjxyi−j+1

finishes the proof of the proposition.

It is easy to check that nontrivial identities for Bn of length 2 and 3 do not exist. It follows
that:

Corollary 2.1. For any n > 0, the identity

(A1,1) xy2x ≈ xyxy ( (A′1,1) yx2y ≈ yxyx)

is the shortest nontrivial identity satisfied in the monoid Bn.
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Remark 2.1. The Adjan identity (I) and the identity (II) are both satisfied in Bn since they are
simple consequences of (A′1,1) if n > 0 :

(A′1,1) ⇒ xy
︷︸︸︷
yx2y xy2x ≈ xy

︷ ︸︸ ︷
yxyx xy2x that is (I);

(A′1,1) ⇒ xy
︷︸︸︷
yx2y yx2y ≈ xy

︷ ︸︸ ︷
yxyx yx2y that is (II).

Remark 2.2. Example 4.4 of [3] sets that

xyxxiyx`−iykx ≈ xyxxjyx`−jykx (0 ≤ i < j < ` and k ≥ 1)

is an identity for B0 if and only if (k + 1)(i + 1) ≥ `+ 1 ≥ 2(j + 1). The problem gets a new
look in the case n > 0. Using (A′i,1) and (A′j,1) we obtain the following two identities satisfied in
Bn, n > 0:

xyxxiyx`−iykx ≈ xyxyx`ykx and xyxxjyx`−jykx ≈ xyxyx`ykx.

So, xyxxiyx`−iykx ≈ xyxxjyx`−jykx is an identity for Bn (if n > 0) for any i, j, k, ` ∈ N with
i, j ≤ `.

3 Main results

Unless otherwise indicated, we consider words v (and identities) with x the first letter and with
ny(v) > 0 (that is, words v of the form v = xku, where u is non-empty and y is the first letter of
u). We say that a word of the form

(∗) x`1(yx)`2z`3 (where z ∈ {x, y}, `1 > 0 and `2, `3 ≥ 0)

is a canonical form of the word v (the words (yx)`2 and z`3 are the empty word if `2 = 0 and
`3 = 0, respectively) if

v ≈ x`1(yx)`2z`3

is an identity satisfied in Bn, n > 0 (`2 can be 0 only if `3 > 0 and z = y since ny(v) > 0).

Lemma 3.1. A canonical form of the word v = xku (y being the first letter of u), is given by

v ≈

{
xk(yx)nx(u)yny(u)−nx(u) if ny(u) ≥ nx(u)

xk(yx)ny(u)xnx(u)−ny(u) if ny(u) < nx(u)
.

Proof. A sequence of identities obtained by using (from left to right) only the identities (Ai,1)

and (A′i,1) (i.e., xyi+1x ≈ xyxyi and yxi+1y ≈ yxyxi) leads us in the end to an identity for Bn of
the form

v ≈ xkyxyx · · · yxzm (m ≥ 0),

where z ∈ {x, y}. It is clear that if ny(u) > nx(u) then z = y and the number of occurrences of
(yx) is nx(u). If ny(u) = nx(u) then the number of occurrences of (yx) is also nx(u). Since any
identity forBn is balanced, it follows thatm = ny(u)−nx(u). Now, if ny(u) < nx(u) then z = x

and the number of occurrences of (yx) is ny(u). Obviously in this case m = nx(u)− ny(u).
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Theorem 3.1. Let v and w be two words in the alphabet {x, y}, v = xku and w = xk
′
u′ (y being

the first letter of both words u and u′). Then the following statements are equivalent:

(i) v ≈ w is an identity satisfied in Bn, n > 0;

(ii) v and w have the same canonical form;

(iii) nx(u) = nx(u
′), ny(u) = ny(u

′) and k = k′;

(iv) (v, w) is balanced and k = k′.

Proof. (i) ⇔ (ii) If v and w have the same canonical form then obviously v ≈ w is an identity
satisfied in Bn if n > 0.

Conversely, if v ≈ w is an identity for Bn, n > 0, and v ≈ x`1(yx)`2z`3 , w ≈ x`
′
1(yx)`

′
2z′`

′
3 ,

are two canonical forms of v and w respectively, then we will prove that the two canonical forms
are the same, that is: (1) `1 = `′1, `2 = `′2, `3 = `′3, and (2) z = z′ if `3 = `′3 6= 0.

Using the substitution σ1,1 by elements of Bn (n > 0) defined by x = a, y = b ,

σ1,1(x
`1(yx)`2z`3) = a`1bn`2b`3 = a`1bn`2+`3 if z = y

and
σ1,1(x

`1(yx)`2z`3) = a`1bn`2a`3 = a`1bn`2+(n−1)`3 if z = x.

Analogously,
σ1,1(x

`′1(yx)`
′
2z′`

′
3) = a`

′
1bn`

′
2+`′3 if z′ = y

and
σ1,1(x

`′1(yx)`
′
2z′`

′
3) = a`

′
1bn`

′
2+(n−1)`′3 if z′ = x.

It is clear that σ1,1(x`1(yx)`2z`3) = σ1,1(x
`′1(yx)`

′
2z`

′
3) implies

`1 = `′1.

Since any identity for Bn is balanced, it follows that

2`2 + `3 = 2`′2 + `′3.

The equality σ1,1(x`1(yx)`2z`3) = σ1,1(x
`′1(yx)`

′
2z′`

′
3) implies also:

Case 1. (z = z′ = y): n`2 + `3 = n`′2 + `′3, that is (n− 2)(`′2 − `2) = 0.

Case 2. (z = z′ = x): n`2 + (n− 1)`3 = n`′2 + (n− 1)`′3, that is (n− 2)(`′2 − `2) = 0.

Case 3. (z 6= z′): if z = y and z′ = x then n`2 + `3 = n`′2 + (n − 1)`′3 implies 2n(`′2 − `2) =
2`3 − 2(n− 1)`′3 and so, (n− 2)(`3 + `′3) = 0; analogously if z = x and z′ = y. Thus the
hypothesis z 6= z′ implies `3 = `′3 = 0 if n 6= 2, and therefore z`3 and z′`′3 are the empty
word.
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Since `′2 = `2 if and only if `′3 = `3 (any identity satisfied in Bn is balanced), the conclusion is
that `′2 = `2, `′3 = `3 if n 6= 2, and z = z′ if `3 = `′3 6= 0 and n 6= 2 (n > 0). The case n = 2 will
be discussed below.

Let σ1,2 be the substitution by elements of B2 defined by x = a, y = b2. Then,

σ1,2(x
`1(yx)`2z`3) = a`1b3`2a`3 = a`1b3`2+`3 if z = x

and
σ1,2(x

`1(yx)`2z`3) = a`1b3`2b2`3 = a`1b3`2+2`3 if z = y.

Analogously,
σ1,2(x

`′1(yx)`
′
2z′`

′
3) = a`

′
1b3`

′
2+`′3 if z′ = x

and
σ1,2(x

`′1(yx)`
′
2z′`

′
3) = a`

′
1b3`

′
2+2`′3 if z′ = y.

Taking into account that `1 = `′1 and 2`2 + `3 = 2`′2 + `′3, the equality σ1,1(x`1(yx)`2z`3) =

σ1,1(x
`′1(yx)`

′
2z`

′
3) implies:

Case 1. (z = z′ = y): 3`2 + `3 = 3`′2 + `′3⇒ `2 = `′2 (and therefore `3 = `′3).

Case 2. (z = z′ = x): 3`2 + 2`3 = 3`′2 + 2`′3⇒ `2 = `′2 (and therefore `3 = `′3).

Case 3. (z 6= z′): if z = y and z′ = x then 3`2 + `3 = 3`′2 + 2`′3 ⇒ `2 = `′2 + `′3 and so
2`′2 + `′3 = 2(`′2 + `′3) + `3, that is `′3 + `3 = 0 and therefore `′3 = `3 = 0 (analogously if
z = x and z′ = y).

Thus, if v ≈ w is an identity for Bn, n > 0, and v ≈ x`1(yx)`2z`3 , w ≈ x`
′
1(yx)`

′
2z′`

′
3 , are two

canonical forms of v and w respectively, then the two canonical forms coincide.
(ii)⇔ (iii) follows from Lemma 3.1.
(iii)⇔ (iv) holds obviously.

Remark 3.1. Given two different words v and w, if xk (k > 0) is the leftmost subword of the
maximal length of both words v and w consisting of repetitions of x, ny(v) = ny(w) = ` > 1

and nx(v)− k = nx(w)− k = m > 0 then, and only then, v ≈ w is a nontrivial identity for Bn

(n > 0). So, a triple of positive integers (k, l,m), l > 1, determine a set of words and thus a set
of nontrivial identities. For example, the triple of positive integers (4, 2, 2) determine the set of
words

{x4y2x2, x4yx2y, x4yxyx}

and the set of nontrivial identities

{x4y2x2 ≈ x4yx2y, x4yx2y ≈ x4yxyx, x4y2x2 ≈ x4yxyx}.

Taking into account all possible cases, we conclude that
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Theorem 3.2. The identities partition PBn (n > 0) is given by

PBn = {Pk,l,m}k,l>0,m≥0 ∪ {Pk,0,0}k>0,

where
Pk,l,m = {xku | the first letter of u is y, ny(u) = l and nx(u) = m}

if k, l > 0,m ≥ 0, and Pk,0,0 (k > 0) are the singletons {xk}. The elements of this partition are
finite sets and if k, l > 0,m ≥ 0, then

|Pk,l,m| =

(
l +m− 1

l − 1

)
.
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