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1 Introduction

Many mathematicians, physicists and engineers have been working for a long time in the field
of q-calculus (see [5, 7–9, 15–18]). The q-calculus is a generalization of many subjects, like the
hypergeometric series, complex analysis, and particle physics. By using q-analogs and umbral
calculus, of many orthogonal polynomials and functions have been studied. The q-calculus is
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mostly being used by physicists at a high level. In short, q-calculus is a very much popular
subject for researchers today.

Recently, due to fundamental importance in numerous areas such as applied mathematics,
mechanics, mathematical physics, Lie theory and quantum algebra (see [1–3, 5]), a progressive
instantaneous development has been found in the field of q-calculus. Throughout the article, C
indicates the set of complex numbers, N designates set of natural numbers and N0 designates set
of non-negative integers. Further, the variable q ∈ C such that | q |< 1.

We review certain definitions and concepts related to the q-calculus taken from [1], which will
be used throughout this work.

The q-analogue of a ∈ C is defined by:

[a]q =
1− qa

1− q
; q ∈ C\{1}. (1)

The q-factorial function is defined by:

[n]q! =
n∏

m=1

[m]q =
(q; q)

(1− q)n
, q 6= 1;n ∈ N, [0]q! = 1; 0 < q < 1. (2)

The q-binomial coefficient
(
n
k

)
q

is defined by:(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, k = 0, 1, 2..., n;n ∈ N0. (3)

The q-exponential function is defined by:

eq(x) =
∞∑
n=0

xn

[n]q!
=

1

((1− q)x; q)∞
, | x |<| 1− q |−1 . (4)

The q-Hermite polynomials are special or limited cased of the orthogonal polynomials as they
contain no parameter other than q and appear to be at the bottom of a hierarchy of the classical
q-orthogonal polynomials (see [2]).

We recall that the q-Hermite polynomials Hn,q(x) are defined by means of the following
generating function, (see [16]):

Fq(x, t) = Fq(t)eq(xt) =
∞∑
n=0

Hn,q(x)
tn

[n]q!
, Fq(t) =

∞∑
n=0

(−1)nq(
n
2) t2n

[2n]q!
. (5)

Recently, many mathematicians studied the unification of the Bernoulli and Euler
polynomials. Luo and Srivastava (see [10, 11]) introduced the generalized Apostol–Bernoulli
polynomials B(α)

n (x) of order α. Further, the generalized Apostol–Euler polynomials E(α)
n (x) of

order α and the generalized Apostol–Genochhi polynomials G(α)
n (x) of order α are investigated

by Luo (see [12, 13]).
Thereafter, in 2014 Ernst [4] defined the q-analogues of the generalized Apostol type

polynomials.
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The generalized q-Apostol–Bernoulli polynomials of order α ∈ N0 are defined by the follow-
ing generating function, (see [4]):(

t

λeq(t)− 1

)α
eq(xt) =

∞∑
n=0

B(α)
n,q (x; a, b;λ)

tn

[n]q!
, (| t |<| log(−λ) |). (6)

The generalized q-Apostol–Euler polynomials of order α ∈ N0 are defined by the following
generating function, (see [4]):(

2

λeq(t) + 1

)α
eq(xt) =

∞∑
n=0

E (α)n,q (x; a, b;λ)
tn

[n]q!
, (| t |<| log(−λ) |). (7)

The generalized q-Apostol–Genocchi polynomials of order α ∈ N0 are defined by the follow-
ing generating function, (see [4]):(

2t

λeq(t) + 1

)α
eq(xt) =

∞∑
n=0

G(α)n,q (x; a, b;λ)
tn

[n]q!
, (| t |<| log(−λ) |). (8)

In view of equations (6)–(8), we introduce the generalized q-Apostol type polynomials
F

(α)
n,q (x; a, b;λ) of order α by means of the following generating function, (see [4]):(

2µtν

λeq(t) + ab

)α
eq(xt) =

∞∑
n=0

F (α)
n,q (x; a, b;λ)

tn

[n]q!
, (9)

(α ∈ N0, λ, a, b ∈ C, | t |<| log(−λ) |).

Where F (α)
n,q (a, b;λ) = F

(α)
n,q (0; a, b;λ) are known as q-Apostol-type numbers of order α.

If we take the limq→1; the generalized q-Apostol type polynomials defined by equation (9)
reduces to the unified Apostol type polynomials (see [14]). In fact, the following special case
holds:

lim
q→1
F (α)
n,q (x; a, b;λ) = F (α)

n (x; a, b;µ, ν;λ).

The following special cases hold true:

lim
q→1
F (α)
n,q (x; 1, 1, 1;λ) = B(α)

n (x;λ),

lim
q→1
F (α)
n,q (x; 0,−1, 0;λ) = E(α)

n (x;λ),

lim
q→1
F (α)
n,q (x; 1,−1/2, 1;λ) = G(α)

n (x;λ),

where B(α)
n (x;λ), E

(α)
n (x;λ) and G(α)

n (x;λ) are the generalized forms of the Apostol–Bernoulli,
Apostol–Euler and Apostol–Genocchi polynomials, (see [14]). The Stirling numbers of the sec-
ond kind are defined as, (see [19]):

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
. (10)

This paper is organized as follows. In Section 2, we consider q-Hermite-based Apostol-type
polynomials and we derive some properties of these polynomials. In Section 3, we derive some
relationships in between q-Apostol-type Bernoulli polynomials, q-Apostol-type Euler polynomi-
als and q-Apostol-type Genocchi polynomials.
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2 q-Hermite-based Apostol-type polynomials

This section is designed with certain properties of q-Hermite-based Apostol-type polynomials
and some properties. We begin with the following definition as follows.

Definition 2.1. For q ∈ C, 0 < | q | < 1, the generalized q-Hermite-based Apostol-type
polynomials are defined by means of the following generating function:(

2µtν

λeq(t) + ab

)α
Fq(t)eq(xt) =

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
, (11)

where, λ, µ, ν, a, b ∈ C, n ≥ 0 and | t |<| ln(−λ) | .
If we take x = 0 in (11), we have

HF (α)
n,q (a, b;µ, ν;λ) = HF (α)

n,q (0; a, b;µ, ν;λ),

where HF (α)
n,q (a, b;µ, ν;λ) are known as q-Hermite-based-Apostol-type numbers of order α.

For λ = 1 in (11), we get

HF (α)
n,q (x; a, b;µ, ν) = HF (α)

n,q (x; a, b;µ, ν; 1),

where HF (α)
n,q (x; a, b;µ, ν) are known as q-Hermite-based unified polynomials of order α.

On setting λ = α = 1 in (11), we have

HFn,q(x; a, b;µ, ν) = HF (1)
n,q(x; a, b;µ, ν; 1),

where HFn,q(x; a, b;µ, ν) are known as q-Hermite-based unified polynomials.

Now, we give some special cases for q-Hermite-based unified Apostol-type polynomials with
the help of the following table:
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S.No. Case Name of the polynomial Generating function

µ = 0, ν = 1, a = −1, b = 1 q-HATBP of order α
(

t
λeq(t)−1

)
Fq(t)eq(xt)

=
∑∞

n=0 HB
(α)
n,q (x;λ; 0, 1)

tn

[n]q !
.

i µ = 0, ν = 1, a = −1, b =

1, λ = 1

q-HBP order α
(

t
eq(t)−1

)
Fq(t)eq(xt)

=
∑∞

n=0 HB
(α)
n,q (x; 1; 0, 1)

tn

[n]q !
.

µ = 0, ν = 1, a = −1, b =

1, λ = α = 1

q-HBP
(

t
eq(t)−1

)
Fq(t)eq(xt)

=
∑∞

n=0 HBn,q(x; 1; 0, 1)
tn

[n]q !
.

µ = 1, ν = 0, a = b = 1 q-HATEP of order α
(

t
λeq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HE
(α)
n,q (x;λ; 1, 0)

tn

[n]q !
.

ii µ = 1, ν = 0, a = b = 1, λ = 1 q-HEP order α
(

t
eq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HE
(α)
n,q (x; 1; 1, 0)

tn

[n]q !
.

µ = 1, ν = 0, a = b = 1, λ =

α = 1

q-HEP
(

t
eq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HEn,q(x; 1; 1, 0)
tn

[n]q !
.

µ = 1, ν = 1, a = b = 1 q-HATGP of order α
(

2t
λeq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HG
(α)
n,q (x;λ; 1, 1)

tn

[n]q !
.

iii µ = 1, ν = 1, a = b = 1, λ = 1 q-HGP order α
(

2t
eq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HG
(α)
n,q (x; 1; 1, 1)

tn

[n]q !
.

µ = 1, ν = 1, a = b = 1, λ =

α = 1

q-HGP
(

t
eq(t)+1

)
Fq(t)eq(xt)

=
∑∞

n=0 HGn,q(x; 1; 1, 1)
tn

[n]q !
.

Table 1. Special cases for q-Hermite-based unified Apostol-type polynomials

Theorem 2.1. The following relations hold true:

HF (α)
m,q(x; a, b;λ;µ, ν) =

m∑
n=0

(
m

n

)
q

F (α)
n,q (a, b;λ;µ, ν)Hm−n,q(x), (12)

HF (α)
n,q (x; a, b;λ;µ, ν) =

m∑
n=0

(
m

n

)
q

HF (α)
n,q (a, b;λ;µ, ν)x

m−n. (13)

Proof. From (11), we have

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=

(
2µtν

λeq(t) + ab

)
Fq(t)eq(xt).

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=
∞∑
n=0

F (α)
n,q (a, b;λ;µ, ν)

tn

[n]q!

∞∑
m=0

Hm,q(x)
tm

[m]q!
.
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Now using the Cauchy product and comparing the coefficients of tn, we obtain the desired
result (12). Again, by using (11), we have

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=

(
2µtν

λeq(t) + ab

)
Fq(t)eq(xt).

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=
∞∑
n=0

HF (α)
n,q (a, b;λ;µ, ν)

tn

[n]q!

∞∑
m=0

(xt)m

[m]q!
.

Using the Cauchy product and comparing the coefficients of tn, we get the result (13).

Theorem 2.2. The following relations hold true:

HF (α+β)
n,q (x; a, b;λ;µ, ν) =

n∑
r=0

(
n

r

)
q

HF (α)
r,q (x; a, b;λ;µ, ν)HF

(β)
n−r,q(a, b;λ;µ, ν), (14)

HF (α+β)
n,q (x+ u; a, b;λ;µ, ν) =

n∑
r=0

(
n

r

)
q

HF (α)
r,q (x; a, b;λ;µ, ν)HF

(β)
n−r,q(u; a, b;λ;µ, ν), (15)

λHF (α)
n,q (x+1; a, b;λ;µ, ν)+abHF (α)

n,q (x; a, b;λ;µ, ν) =
2µ[n]q!

[n− k]q!
HF (α−1)

n−k,q (x; a, b;λ;µ, ν). (16)

Proof. Utilizing (11) and making use of lemma (see [20, p.100, eq.2]), we can easily obtain
results (14) and (15).

For obtaining the result (16), we take
∞∑
n=0

HF (α)
n,q (x+ 1; a, b;λ;µ, ν)

tn

[n]q!
+ ab

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!

= λ

(
2µtν

λeq(t) + ab

)α
Fq(t)eq((x+ 1)t) + ab

(
2µtν

λeq(t) + ab

)α
Fq(t)eq(xt)

=

(
2µtν

λeq(t) + ab

)α
Fq(t)eq(xt)[λeq(t) + ab]

=
∞∑
n=0

2µHF (α−1)
n,q (x; a, b;λ;µ, ν)

tn+k

[n]q!
.

Using the Cauchy product and comparing of the coefficients of tn, we arrive at the required
result (16).

Theorem 2.3. The following recurrence relations hold true:

HB(α)
k,q

(
1

m

)
−

k∑
j=0

(
k

j

)
q

(
1

m
− 1

)k−j
B(α)
j,q = [k]q

k−1∑
j=0

(
k − 1

j

)
q

×
(

1

m
− 1

)(k−j−1)

q

HB(α−1)
j,q ,

(17)

HE (α)k,q

(
1

m

)
+

k∑
j=0

(
k

j

)
q

(
1

m
− 1

)k−j
E (α)j,q = 2

k∑
j=0

(
k

j

)
q

×
(

1

m
− 1

)(k−j)

q

HE (α−1)j,q . (18)
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Proof. These relations can be obtained by making use of (11) with replacement of x with 1
m

.

Proposition. The following differential relation holds true:

Dq,xHF (α)
n,q (x; a, b;λ;µ, ν) = [n]qHF (α)

n−1,q(x; a, b;λ;µ, ν). (19)

Proof. Using (11), we get

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=

(
2µtν

λeq(t) + ab

)α
eq(xt)Fq(t).

Differentiating the above equation with respect to x and using the resultDq,xeq(xt) = xeq(xt),
we have

Dq,x

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=

(
2µtν

λeq(t) + ab

)α
e(xt)Fq(t)t.

Now using the Cauchy product and comparing the coefficients of t, we lead to the required
result.

Theorem 2.4. The following relations hold true:

HF (α)
n,q (x; a, b;λ;µ, ν) =

[n2 ]∑
m=0

(−1)mq(
m
2 )
(
n

2m

)
q

F (α)
n−2m,q(x; a, b;λ;µ, ν), (20)

HF (α)
n,q (x; a, b;λ;µ, ν) =

n∑
m=0

(
n

m

)
q

HF (α)
n−m,q(a, b;λ;µ, ν)x

m. (21)

Proof. From (11), we have

∞∑
n=0

HF (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!
=

(
2µtν

λeq(t) + ab

)
Fq(t)eq(xt)

=
∞∑
n=0

F (α)
n,q (x; a, b;λ;µ, ν)

tn

[n]q!

∞∑
m=0

(−1)mq(
m
2 ) t2m

[2m]q!
.

Using the Cauchy product and comparing the coefficients of t, we arrive at the desired result (20).
The proof of (21) is similar.

Corollary 2.4.1. On setting x = 1 in (20) and (21), we have

HF (α)
n,q (1; a, b;λ;µ, ν) =

[n2 ]∑
m=0

(−1)mq(
m
2 )
(
n

2m

)
q

F (α)
n−2m,q(1; a, b;λ;µ, ν), (22)

HF (α)
n,q (1; a, b;λ;µ, ν) =

n∑
m=0

(
n

m

)
q

HF (α)
n−m,q(a, b;λ;µ, ν). (23)
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3 Relationships between Bernoulli, Euler and Genocchi
polynomials

In this section, we establish some relationships for q-Hermite-based Apostol-type polynomials
related to q-Apostol–Bernoulli polynomials, q-Apostol–Euler polynomials and q-Apostol-type
Genocchi polynomials.

Theorem 3.1. The following relation holds true:

HF (α)
n,q (x; a, b;λ;µ, ν) =

1

[n+ 1]q!

[
λ
n+1∑
r=0

(
n+ 1

r

)
q

n+1∑
m=0

(
n+ 1

m

)
q

Bn+1−m−r,q(x;λ)

]
HF (α)

m,q(a, b;λ;µ, ν)

−

[
1

[n+ 1]q!

n+1∑
m=0

(
n+ 1

m

)
q

Bn+1−m,q

]
HF (α)

m,q(a, b;λ;µ, ν). (24)

Proof. From (11), we have(
2µtν

λeq(t) + ab

)α
eq(xt)Fq(t) =

(
2µtν

λeq(t) + ab

)α
t

λeq(t)− 1
Fq(t)

λeq(t)− 1

t
eq(xt)

=

(
2µtν

λeq(t) + ab

)α
Fq(t)

[
t

λeq(t)− 1
eq(xt)

]
λ

t
eq(t)

−1

t

(
2µtν

λeq(t) + ab

)α
Fq(t)

[
t

λeq(t)− 1
eq(xt)

]

=
1

t

(
λ
∞∑
m=0

HF (α)
m,q(a, b;λ;µ, ν)

tm

[m]q!

∞∑
r=0

Br,q(x;λ)
tr

[r]q!

∞∑
r=0

tr

[r]q!

−
∞∑
m=0

HF (α)
m,q(a, b;λ;µ, ν)

tm

[m]q!

∞∑
n=0

Bn,q(x;λ)
tn

[n]q!

)
.

On making use of the Cauchy product and comparing the coefficients of tn, we arrive at the
desired result.

Corollary 3.1.1. The following relations hold true for Euler and Genocchi polynomials with
q-Hermite-based Apostol-type polynomials.

HF (α)
n,q (x; a, b;λ;µ, ν) =

1

2

[
λ

n∑
r=0

(
n

r

)
q

n∑
m=0

(
n

m

)
q

En−m−r,q(x;λ)

]
HF (α)

m,q(a, b;λ;µ, ν)

−

[
1

2

n∑
m=0

(
n

m

)
q

En−m,q

]
HF (α)

m,q(a, b;λ;µ, ν),

(25)

and

HF (α)
n,q (x; a, b;λ;µ, ν) =
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1

2[n+ 1]q!

[
λ
n+1∑
r=0

(
n+ 1

r

)
q

n+1∑
m=0

(
n+ 1

m

)
q

Gn+1−m−r,q(x;λ)

]
HF (α)

m,q(a, b;λ;µ, ν)

−

[
1

2[n+ 1]q!

n+1∑
m=0

(
n+ 1

m

)
q

Gn+1−m,q

]
HF (α)

m,q(a, b;λ;µ, ν). (26)

Theorem 3.2. The following explicit relationship between q-Hermite-Apostol Bernoulli poly-
nomials, q-Hermite-Apostol Euler polynomials and q-Hermite-Apostol Genocchi polynomials
holds true:

HG(α)n,q (x; a, b;λ) =
1

2

n∑
k=0

(
n

k

)
q

[
k∑
j=0

(
n

j

)
q

HEn−j−k,q(x;λ) + HEn−k,q(x;λ)

]
HG(α)k,q (x; a, b;λ).

(27)

Proof. From (11), we get(
2t

λeq(t) + ab

)α
eq(xt)Fq(t) =

2

λeq(t) + 1
Fq(t)

(
eq(t) + 1

2

)(
2t

λeq(t) + ab

)α
eq(xt)

∞∑
n=0

HG(α)n,q (x; a, b;λ)
tn

[n]q!
=

1

2

∞∑
n=0

HEn,q(0;λ)
tn

[n]q!

∞∑
j=0

tj

[j]q!

∞∑
k=0

HG(α)k,q (x; a, b;λ)
tk

[k]q!

+
1

2

∞∑
n=0

HEn,q(0;λ)
tn

[n]q!

∞∑
k=0

HG(α)k,q (x; a, b; )
tk

[k]q!
.

∞∑
n=0

HG(α)n,q (x; a, b;λ)
tn

[n]q!
= I1 + I2. (28)

For I1,

I1 =
1

2

∞∑
n=0

HEn,q(0;λ)
tn

[n]q!

∞∑
j=0

tj

[j]q!

∞∑
k=0

HG(α)k,q (x; a, b;λ)
tk

[k]q!

I1 =
1

2

∞∑
n=0

n∑
k=0

n∑
j=0

(
n

k

)
q

HG(α)k,q (x; a, b;λ)

(
n

j

)
q

HEn−j−k,q(0;λ)
tn

[n]q!
. (29)

For I2,

I2 =
1

2

∞∑
n=0

HEn,q(0;λ)
tn

[n]q!

∞∑
k=0

HG(α)k,q (x; a, b; )
tk

[k]q!

I2 =
1

2

∞∑
n=0

n∑
k=0

(
n

k

)
q

HEn−k,q(0;λ)HG(α)k,q (x; a, b; )
tn

[n]q!
. (30)

From (28), we get
∞∑
n=0

HG(α)n,q (x; a, b;λ)
tn

[n]q!
=
1

2

∞∑
n=0

n∑
k=0

(
n

k

)
q

[
n∑
j=0

(
n

j

)
q

HEn−j−k,q(x;λ)

+ HEn−k,q(x;λ)

]
HGαk,q(x; a, b;λ)

tn

[n]q!
.

On comparing the coefficients of tn, we obtain the required result.
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Theorem 3.3. The following relation holds true:

E (α)n,q (x; a, b;λ) =
n∑
k=0

(
n

k

)
q

1

mn−1[k + 1]q!

[
2
k+1∑
j=0

(
k + 1

j

)
q

(
1

m
− 1

)k+1−j

E (α−1)j,q (0; a, b;λ)

−
k+1∑
j=0

(
k + 1

j

)
q

(
1

m
− 1

)k+1−j

E (α)j,q (0; a, b;λ)− E
(α)
k+1,q(0; a, b;λ)

]
×HBn−k,q(mx; a, b;λ). (31)

Proof. Using (11), we have(
2

λeq(t) + ab

)α
eq(xt)Fq(t) =

(
2

λeq(t) + ab

)α
λeq(t/m)− ab

t

t

λeq(t/m− ab)

×eq
(
t

m
mx

)
Fq(t).

By using equations (7) and (11), we arrive at the desired result.

Theorem 3.4. The following relations hold true:

HB(α)
n,q (x; a, b;λ) =

n∑
j=0

(
mx

j

)
j!

n−j∑
k=0

(
n

k

)
q

mj−n
HB(α)

k,q (0; a, b;λ)S2(n− k, j), (32)

HE (α)n,q (x; a, b;λ) =
n∑
j=0

(
mx

j

)
j!

n−j∑
k=0

(
n

k

)
q

mj−n
HE (α)k,q (0; a, b;λ)S2(n− k, j). (33)

Proof. By using eq. (10) and (11), we obtain the results (32) and (33). We omit the proof.
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