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1 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V = (v1, v2, . . . , vn) and the edge set
E. The adjacency matrix A(G) = A = [aij] is an n-square matrix of zeros and ones for which
aij = 1 iff vi is adjacent to vj (which means there is an edge between vi and vj).

It is clear that the determinant of an n× n matrix A = (aij) may be given by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i) ,

where Sn represents the symmetric group of degree n. Analogously, if one omits the sign pattern
which the determinant involves, we get the permanent of A defined by

per (A) =
∑
σ∈Sn

n∏
i=1

aiσ(i) .
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In general, permanents of matrices have noteworthy combinatorial significance. Especially, the
permanents of {0, 1} matrices enumerate matchings in bipartite graphs.

The characteristic polynomial of adjacency matrix of a graph is defined with

Ω(G, λ) = det(λI − A(G)).

The characteristic polynomial of graphs and its applications are intensively studied (see [3, 4, 11]
and references therein).

The permanental polynomial of A is

Π(G, λ) = per(λI − A(G)),

where per denotes the permanent of the matrix. It is considered that the permanental polyno-
mial was first studied by Turner [15]. The author takes into account a graph polynomial which
generalizes both the permanental polynomial and the characteristic polynomial. In chemistry, the
permanental polynomial was first considered at 1981 by Kasum et al [8]. The authors showed
the relationships between the permanental polynomial and the structure of conjugated molecules.
In Chemical Graph Theory, the skeleton of a hydrocarbon molecule can be represented by a
simple graph and the adjacency matrix of a simple graph can be represented by a symmetric
{0, 1} matrix.

The Kronecker product, also called as tensor product, is a way of matrix multiplication. Let
us consider two matricesA andB of sizesm×n and s× t, respectively. Their Kronecker product
is defined by

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2B · · · amnB

 .

Here we want to remember some useful properties of Kronecker product of matrices [17], i.e.;
(i) For A = [aij]m×m and B = [bij]n×n;

|A⊗B| = |A|n · |B|m = |B ⊗ A| (1.1)

(ii) For any square A and B matrices, if A−1 and B−1 exist, then

(A⊗B)−1 = A−1 ⊗B−1. (1.2)

There exists a vast literature that studies the various properties of graphs and their relation-
ships. Merris et al. [9] are the first to systematically study the permanental polynomials and they
proved that the coefficient of the permanental polynomial satisfies that

(−1)ibi =
∑
H

2k(H),

where the sum ranges over all subgraphs H on i vertices which components are single edges or
cycles, and k(H) is the number of cycles. Based on this result, similarly to the technique of
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computing the characteristic polynomial of a graph in terms of subgraphs [12], Borowiecki and
Jozwiak [1] studied the relationship between the permanental polynomial of a dimultigraph and
certain subgraphs.

The well-known Fibonacci sequence is defined by the recurrence relation Fn+1 = Fn + Fn−1
with initial conditions F0 = 0 and F1 = 1. In [7], Kalman considered the sequence

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, . . . , ck−1 are constants and the author generalized the sequence by companion ma-
trix, as below:

Hn


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1

 ,

where

H =


c0 c1 · · · ck−2 ck−1
1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
...

0 0 0 1 0

 .

This paper is concerned with ladder graphs which can be obtained as the Cartesian product
of two path graphs. Moreover, this paper is partly presented at the conference given by [5].

(1.3)

The adjacency matrix of the graph, given by (1.3), is an n-square (n = 2k) block matrix

A = A(G) =

(
Bk Ik

Ik Bk

)
, (1.4)

where

Bk = [bij] =

{
1, for i = j + 1 and j = i+ 1

0, otherwise

and Ik is the identity matrix of order k.

Example 1.1. For instance, if k = 3 (n = 6), the adjacency matrix is:

A(G) =



0 1 0 1 0 0

1 0 1 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0


.
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It is known that a matching (for graphs) is a set of edges which satisfies the property that no
vertex is incident with more than one edge in the set. Moreover, a matching is perfect iff every
vertex is incident with exactly one edge of the matching [16]. In other words, if a graph, with
even n = |V | numbers, has a matching with n/2 edges, it is called a perfect matching graph
[6] and the number of possible perfect matchings of a graph is the perfect matching number, or
Kekule number. In this note, we consider ladder graphs whose adjacency matrix is {0, 1} matrix.
By using the fact, the permanents of {0, 1} matrices enumerate matchings in bipartite graphs, we
show that the perfect matchings of the graph corresponds to the square of the Fibonacci numbers.
Moreover, we get additional spectecular properties of the graph.

2 Main results

Theorem 2.1. For k > 2, the permanental polynomial of A(G) is

P2k+2(x) = (x2 + 3)P2k(x)− P2k−2(x) + 2(−1)k−1 (2.1)

with initial conditions P6(x) = x6 + 7x4 + 15x2 + 9 and P4(x) = x4 + 4x2 + 4.

Proof. Using the Principle of Mathematical Induction (PMI), it is clear that the theorem holds for
k = 3. Suppose that it verifies for k = t. Then, we need to verify for k = t + 1. By considering
the same way with Kalman [7], we can write (for k > 2),(

x2 + 3 −1

1 0

)(
Pn
Pn−2

)
=

(
Pn+2 + 2(−1)k

Pn

)
. (2.2)

By using (2.2), it is easy to see that it holds for k = t+ 1.

From the theorem, we have the following result.

Corollary 2.2. The permanent of the adjacency matrix A(G), given in (1.4), is

perA(G) = F 2
k

where Fk is the k-th Fibonacci number.

Proof. For x = 0 at (2.1), the proof is clear.

Since the adjacency matrix of the graph is a block matrix, let us remind the following property
for block matrices, without proof.

Let us define n-square (n = 2k) matrix En as below:

En =

(
Ik Ik

Ik −Ik

)
,

where Ik is a k-square identity matrix. Then we have the following lemmas.

Lemma 2.3 ([5]). detEn = (−2)k.
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Proof. It is obvious that En can be rewritten as below:

En =

(
1 1

1 −1

)
⊗ Ik

by (1.1), the proof can be seen easily.

Lemma 2.4 ([5]). The inverse of En is

E−1n =
1

2

(
Ik Ik

Ik −Ik

)
.

Proof. It can be verified using (1.2).

Firstly, let us consider n-square block-matrix (U = [uij] and Vk = [vij]),

Mn =

(
Uk 0

0 Vk

)
,

where

[uij] =

{
1, for i = j, i = j + 1 and j = i+ 1

0, otherwise

and

[vij] =


1, for i = j + 1 and j = i+ 1

−1 for i = j,
0, otherwise

.

Theorem 2.5. The matrices A(G) and Mn are similar.

Proof. By matrix multiplication, it can be seen that Mn = E−1n A(G)En provides. So the proof is
completed.

Lemma 2.6 ([10]). The eigenvalues of the matrix
0 1

1 0
. . .

. . . . . . 1

1 0


are

λk = −2 cos
kπ

n+ 1
, k = 1, 2, 3, ..., n.

Theorem 2.7. The eigenvalues of Mn are

λj(Uk) =

(
1− 2 cos

πj

k + 1

)
,

λj(Vk) =

(
−1− 2 cos

πj

k + 1

)
,

where j = 1, 2, . . . , k.
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Proof. Since the matrices Uk and Vk are tridiagonal matrices, by exploiting the well-known
Chebyshev polynomial properties, it is easy to compute the eigenvalues by using [2]
and [10].

Hereby, similar matrices have the same eigenvalues, trace, determinant, rank, Jordan form and
number of independent eigenvectors [14].

Theorem 2.8.

detA(G) =
k∏
j=1

(
1− 2 cos

πj

k + 1

)(
−1− 2 cos

πj

k + 1

)
,

where j = 1, 2, . . . , k.

Proof. Since the characteristic polynomials of A(G) and Mn are equal, then their determinants
are also the same. The eigenvalues of Uk and Vk are, respectively:

λj(Uk) =

(
1− 2 cos

πj

k + 1

)
,

λj(Vk) =

(
−1− 2 cos

πj

k + 1

)
.

So the proof is completed.
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