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Abstract: Let {p,},>1 be the sequence of primes and J(z) = >_ _, logp, where p runs over
the primes not exceeding x, be the Chebyshev v¥-function. In this note, we derive lower and
upper bounds for J(p,,)/n, by comparing it with logp,,; and deduce the asymptotic formula

O(pa)/n = logpun (1— phs + 21222 (14 (1))
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1 Introduction

Let {p,, }n>1 be the sequence of the prime numbers and ¥(x) = > __logp, where p runs over the

<z
primes not exceeding x, be the Chebyshev v-function. The type c]))f bounds that we shall discuss
here was introduced by Bonse [2], who showed that ¥(p,,) > 2logp, 1 holds for every n > 4
and ¥(p,) > 3log p,41 holds for every n > 5. Thereafter, Pésa [8] showed that, given any k& > 1,
there exists ny, such that 9(p,) > klogp,. holds for all n > ny. Panaitopol [7] showed that in

Pésa’s result we can have n;, = 2k and also gave the bound

J(pn)
log Prn+1

>n—mn(n) (n>2),

where 7(n) is equal to the number of primes less or equal to n. Hassani [5] refined Panaitopol’s
inequality to the following

>n — 7r(n)<1 - ) (n >101). (1)

logn



Recently, Axler [1, Propositions 4.1 and 4.5] showed that

1 2.7 I(pn) 1 3.84
1+ + —— <logp, — <1+ +—,
logp, log”p, logp, log”p,

where the left-hand side inequality is valid for every integer n > 218 and the right-hand side
inequality holds for every n > 74004585. This provides the following asymptotic formula

J(pn)

=logp, —1— —i—@( )
&b log pn log” py,

For further terms, see Axler [1, Proposition 2.1].
In the present note, we show the following result, which is a refinement of (1).

Theorem 1.1. For alln > 6, we have

1 logl 9(pn 1 logl
n(1 +°g0g”>< (pn) <n<1— +0g0g”> )

B logn  4log*n/ ~ logpni1 — logn log®n
The left-hand side inequality also holds for 2 < n < 6.

We can, in fact, generalise the left-hand side of (2) to have the following result.

Theorem 1.2. For every 0 < € < 1, there exists n. € N such that for every n > n. it holds that

1 log1 I p, 1 log1
n(l— T (1-e) 8 ;’g")g (Pn) §n<l— 28 ;’g”). 3)
logn log”n log P11 logn log“n
Jpy, 1 log 1
Corollary 1.2.1. We have (Pn) =logpni1 | 1— °8 Zgn (I14+0(1)) ).
n logn log”n
2 Preliminaries
log 1 —
Define G(n,a) = logn + loglogn — 1 + w. We shall use the following bounds for
ogn
I (pn)/n.
Lemma 2.1. For every n > 3, we have
V(pn
(Pn) 5 G1(n,2.1454), @)
n
and for every n > 198, we have
V(P
B1) < Gn,2). 5)
n

Proof. The inequality (4) is due to Robin [9], and the inequality (5) was given by Massias and
Robin [6]. L]



Lemma 2.2. For every n > 227, we have
pn < n(logn + loglogn — 0.8), (6)

and for every n > 2,
pn > n(logn + loglogn — 1). (7

Proof. For n > 8602, we have the following stronger bound
pn < n(logn + loglogn — 0.9385) (8)

given by Massias and Robin [6]. For 227 < n < 8601 we verify the inequality (6) by direct

computation. The inequality (7) is due to Dusart [4]. ]
For the sake of brevity, we define F(n,\) =1 — lo; - + )\loli;in and rewrite (2) as
F(n,0.25)10g ppi1 < Hpp)/n < F(n,1)logpuit )
and rewrite (3) as
F(n,1—¢e)logpui1 < ¥(pp)/n < F(n,1)logp,i1. (10)

3 Proof of Theorem 1.1

The proof of Theorem 1.1 is split into two lemmas. In the first lemma, we give lower and upper
bounds for log p;, 1.

Lemma 3.1. For every n > 140, we have

loglogn — 0.8 +0.018

log pri1 < logn + loglogn + U(n), (11)
logn
and for every n > 2, we have
1 > logn + loglog n + loglogn — 1 V(n) (12)
08 Pn ogn + loglogn =V(n).
&Pnt1 & &8 logn + 0.5(loglogn — 1)
Proof. First, we show that for every z > 1
1 1
> 1 14+—1]> . 13
r+04 og< +x> x+0.5 (13)

z(a’x +2a —1)
(1+2)(1+ax)?
Hence, f{ ,(x) < 0 forevery x € (0, 1.25) which yields fo4(1/z) < fo.4(0) = 0 forevery x > 1.

In order to prove this, we set f,(z) = log(1 + x)— H#mf Note that, f!(z) =



On the other hand, f ;(x) > 0 for all positive x, which gives fo5(1/z) > fo5(0) = 0 for every
x> 1.

Next, we give a proof of (11). By (6), we have for n > 227,
log pra1 < log(n + 1) +log(log(n + 1) 4 loglog(n + 1) — 0.8). (14)

The left-hand side inequality of (13) gives log(n + 1) < logn +

1
, which in turn implies
n+ 0.4

that

1

logl 1) < log] log (1 S —
oglog(n + 1) < loglogn +log (1 + (n 04 Togn

1
—_ log1
(n+0.4) logn) < loglogn

Applying this to (14), we obtain for n > 227,

log ppi1 < logn +

n+ 0.4

1+1/1
+ log (logn—i— loglogn — 0.8 + %)

loglogn—0.8+ 1 logn+1+41/logn

15
logn logn n+ 0.4 (15)

< logn + loglogn +

logz +1+1/logx
z+04
Hence g(z) < 0.018 holds for every x > 400 > ¢5%. Combined with (15), it yields that

Now, g(z) = is a decreasing function for z > 2 with g(e>%?) < 0.018.

log pri1 < U(n) for every n > 400. For every 140 < n < 399 we check the inequality (11) with
a computer. This completes the proof of (11).

To prove the inequality (12), first note that (7) gives for every n > 1,

log pni1 > log(n + 1) + log(log(n + 1) + loglog(n + 1) — 1). (16)

The right-side inequality of (13) gives log(n + 1) > logn + . Using (13) once again, we

n—+0.5
get, forn > 2,

1 1
> .
(n+0.5) logn> (n+0.5)logn + 0.5

loglog(n + 1) — loglogn > log (1 +

Applying this to (16), we arrive at

1 1
log pry > 1 log (1 log] -1)
08 Pyt = o log | fos T 4 o 08 B T S g + 0.5
log1 -1
> logn + loglogn + log (1 + w).
logn
Invoking (13) one more time, we get log p,+1 > V' (n) for every n > 2. U
Lemma 3.2. For every n > 396, we have
G(n,2.1454) > F(n,0.25) - U(n), (17)
and for every n > 2, we have
G(n,2) < F(n,1)-V(n). (18)

Here U(n) and V (n) are defined as in Lemma 3.1.
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Proof. We start with the proof of (17). Setting x = log n, the inequality (17) can be rewritten as

r+logr —1+

1 — 2.1454 1 1 1 —0.8+0.018
ogx Z(l——-l— 0gw)<x+logx+ ogx + )7
x x  4x? x

which is equivalent to

log x logz  log’x

4z 42

) +(0.8—0.018)(1- 1, 10“) > 0.

3
<_ logz + T 432

— 2.1454 —
i )+

The left-hand side is a sum of three increasing functions on the interval [5.7, 00) and at x = 5.99
the left-hand side is positive. So the last inequality holds for every =z > 5.99; i.e., for every
n > 400. A direct computation shows that the inequality (17) also holds for every n satisfying
396 < n < 399.

Next, we give a proof of (18). It is easy to see that
2* +logr(logz — 1) > glog z(logzx — 1)

for every x > 0. Now, for x > 1, the last inequality is seen to be equivalent to

1_1+log:v logxr — 1 Zlogm—Q.
z+0.5(logz —1) T

x 2

1og2 x

Since 5
X

> 0 for every x > 0, we get

log? 11 logz — 1 logz — 2
og x+< oga:) ogx , logz (19)

1— =
22 x * 2?2 ) v+ 0.5(logx — 1) — x

for every x > 1. Substituting x = logn in (19), we obtain the inequality (18) for every integer
n > 3. We can directly check that (18) holds for n = 2 as well. [l

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. We use (4), (17) and (11) respectively to see that for every n > 396,
Y(pn)/n > G(n,2.1454) > F(n,0.25) U(n) > F(n,0.25) log pyi1.

A direct computation shows that the left-hand side inequality of (9) also holds for every integer n
with 2 < n < 395.
In order to prove the right-hand side inequality of (9), we combine (5), (18) and (12),

respectively, to get
d(pn)/n < G(n,2) < F(n,1) V(n) < F(n,1)log ppis
for every n > 198. For smaller values of n, we use a computer. [
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4 Proof of Theorem 1.2

The right-hand side of (10) has been established already. To show the left-hand side, we start with
the following lemma.

Lemma 4.1. For any 0 < € < 1, there exists m. € N such that

G(n,2.1454) > F(n,1 —¢) - U(n) (20)
holds for every n > m.. Here U(n) is defined as in Lemma 3.1.
Proof. Fixany 0 < ¢ < 1. We denote a = 2.1454,b = 0.8 — 0.018 and set = = log n to transform

the inequality (20) into

1 log x
> <1—E+(1—5)W><x+logm+

logx —a

1 —b
x+logr —1+ OgL).

i

This is equivalent to

1 log”z  log’ 1 1
<5logx—|- 0§$)+<_G_(1_5)(ogx+og x))—i—b(l—;—i—(l—e)ng)ZO.

T 2
Now, the left-hand side is a sum of three functions, each of which is strictly increasing for all
sufficiently large x, and the limit of the left-hand side, as x — oo, is +00. Therefore we conclude

that the last inequality holds for all sufficiently large x. [

Proof of Theorem 1.2. For any 0 < ¢ < 1, we have m. € N such that (20) holds for every
n > m.. We combine this with (4) and (11) to obtain that for every n > n. := max{m., 140}

Y (pn)/n > G(n,2.1454) > F(n,1 —e) U(n) > F(n,1 —¢)log ppi1-

This completes the proof. []

5 Remarks

1. For every n > 599, we have
m(n) 1 1
> ?
n —logn  log*n
which was found by Dusart [3]. Using this and a computer, we get

7(n) - 1 (1 _log logn)

n — logn—1 4logn
for every integer n > 83. Hence, (2) is an improvement of (1).
2. The bounds given in (2) are particularly useful for comparing 9J(p,,) /n with logp,1. To
see a numerical example, we use a computer to find that for n > 23 the relative error in

approximating 9(p,,)/n with F(n,0.25) is less than 5% and for n > 114 it is less than 2%.
An important feature of (2) is that it holds even for very small values of n.
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