Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 25, 2019, No. 4, 1–7

DOI: 10.7546/nntdm.2019.25.4.1-7

An asymptotic formula for the Chebyshev theta function

Aditya Ghosh

Indian Statistical Institute, Kolkata, India e-mail: ghoshadi26@gmail.com

Received: 11 March 2019 Revised: 21 October 2019 Accepted: 23 October 2019

Abstract: Let $\{p_n\}_{n\geq 1}$ be the sequence of primes and $\vartheta(x)=\sum_{p\leq x}\log p$, where p runs over the primes not exceeding x, be the Chebyshev ϑ -function. In this note, we derive lower and upper bounds for $\vartheta(p_n)/n$, by comparing it with $\log p_{n+1}$ and deduce the asymptotic formula $\vartheta(p_n)/n = \log p_{n+1} \left(1 - \frac{1}{\log n} + \frac{\log \log n}{\log^2 n} \left(1 + o(1)\right)\right)$. **Keywords:** Chebyshev theta function, Geometric mean of first n primes, Prime numbers.

2010 Mathematics Subject Classification: 11A41, 11A25.

1 Introduction

Let $\{p_n\}_{n\geq 1}$ be the sequence of the prime numbers and $\vartheta(x)=\sum_{p\leq x}\log p$, where p runs over the primes not exceeding x, be the Chebyshev ϑ -function. The type of bounds that we shall discuss here was introduced by Bonse [2], who showed that $\vartheta(p_n) > 2 \log p_{n+1}$ holds for every $n \geq 4$ and $\vartheta(p_n) > 3\log p_{n+1}$ holds for every $n \geq 5$. Thereafter, Pósa [8] showed that, given any k > 1, there exists n_k such that $\vartheta(p_n) > k \log p_{n+1}$ holds for all $n \geq n_k$. Panaitopol [7] showed that in Pósa's result we can have $n_k = 2k$ and also gave the bound

$$\frac{\vartheta(p_n)}{\log p_{n+1}} > n - \pi(n) \quad (n \ge 2),$$

where $\pi(n)$ is equal to the number of primes less or equal to n. Hassani [5] refined Panaitopol's inequality to the following

$$\frac{\vartheta(p_n)}{\log p_{n+1}} > n - \pi(n) \left(1 - \frac{1}{\log n}\right) \quad (n \ge 101). \tag{1}$$

Recently, Axler [1, Propositions 4.1 and 4.5] showed that

$$1 + \frac{1}{\log p_n} + \frac{2.7}{\log^2 p_n} < \log p_n - \frac{\vartheta(p_n)}{n} < 1 + \frac{1}{\log p_n} + \frac{3.84}{\log^2 p_n},$$

where the left-hand side inequality is valid for every integer $n \ge 218$ and the right-hand side inequality holds for every $n \ge 74004585$. This provides the following asymptotic formula

$$\frac{\vartheta(p_n)}{n} = \log p_n - 1 - \frac{1}{\log p_n} + \Theta\left(\frac{1}{\log^2 p_n}\right).$$

For further terms, see Axler [1, Proposition 2.1].

In the present note, we show the following result, which is a refinement of (1).

Theorem 1.1. For all $n \ge 6$, we have

$$n\left(1 - \frac{1}{\log n} + \frac{\log\log n}{4\log^2 n}\right) \le \frac{\vartheta(p_n)}{\log p_{n+1}} \le n\left(1 - \frac{1}{\log n} + \frac{\log\log n}{\log^2 n}\right) \tag{2}$$

The left-hand side inequality also holds for $2 \le n \le 6$.

We can, in fact, generalise the left-hand side of (2) to have the following result.

Theorem 1.2. For every $0 < \varepsilon < 1$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for every $n \geq n_{\varepsilon}$ it holds that

$$n\left(1 - \frac{1}{\log n} + (1 - \varepsilon)\frac{\log\log n}{\log^2 n}\right) \le \frac{\vartheta(p_n)}{\log p_{n+1}} \le n\left(1 - \frac{1}{\log n} + \frac{\log\log n}{\log^2 n}\right). \tag{3}$$

Corollary 1.2.1. We have
$$\frac{\vartheta(p_n)}{n} = \log p_{n+1} \left(1 - \frac{1}{\log n} + \frac{\log \log n}{\log^2 n} \left(1 + o(1) \right) \right)$$
.

2 Preliminaries

Define $G(n, a) = \log n + \log \log n - 1 + \frac{\log \log n - a}{\log n}$. We shall use the following bounds for $\vartheta(p_n)/n$.

Lemma 2.1. For every $n \ge 3$, we have

$$\frac{\vartheta(p_n)}{n} \ge G(n, 2.1454),\tag{4}$$

and for every $n \ge 198$, we have

$$\frac{\vartheta(p_n)}{n} \le G(n,2). \tag{5}$$

Proof. The inequality (4) is due to Robin [9], and the inequality (5) was given by Massias and Robin [6]. \Box

Lemma 2.2. For every $n \ge 227$, we have

$$p_n \le n(\log n + \log\log n - 0.8),\tag{6}$$

and for every $n \geq 2$,

$$p_n \ge n(\log n + \log\log n - 1). \tag{7}$$

Proof. For $n \ge 8602$, we have the following stronger bound

$$p_n \le n(\log n + \log\log n - 0.9385) \tag{8}$$

given by Massias and Robin [6]. For $227 \le n \le 8601$ we verify the inequality (6) by direct computation. The inequality (7) is due to Dusart [4].

For the sake of brevity, we define $\mathcal{F}(n,\lambda) = 1 - \frac{1}{\log n} + \lambda \frac{\log \log n}{\log^2 n}$ and rewrite (2) as

$$\mathcal{F}(n, 0.25) \log p_{n+1} \le \vartheta(p_n)/n \le \mathcal{F}(n, 1) \log p_{n+1} \tag{9}$$

and rewrite (3) as

$$\mathcal{F}(n, 1 - \varepsilon) \log p_{n+1} \le \vartheta(p_n)/n \le \mathcal{F}(n, 1) \log p_{n+1}. \tag{10}$$

3 Proof of Theorem 1.1

The proof of Theorem 1.1 is split into two lemmas. In the first lemma, we give lower and upper bounds for $\log p_{n+1}$.

Lemma 3.1. For every $n \ge 140$, we have

$$\log p_{n+1} < \log n + \log \log n + \frac{\log \log n - 0.8 + 0.018}{\log n} = U(n), \tag{11}$$

and for every $n \geq 2$, we have

$$\log p_{n+1} > \log n + \log \log n + \frac{\log \log n - 1}{\log n + 0.5(\log \log n - 1)} = V(n). \tag{12}$$

Proof. First, we show that for every $x \ge 1$

$$\frac{1}{x+0.4} > \log\left(1+\frac{1}{x}\right) > \frac{1}{x+0.5}.\tag{13}$$

In order to prove this, we set $f_a(x) = \log(1+x) - \frac{x}{1+ax}$. Note that, $f_a'(x) = \frac{x(a^2x+2a-1)}{(1+x)(1+ax)^2}$. Hence, $f_{0.4}'(x) < 0$ for every $x \in (0, 1.25)$ which yields $f_{0.4}(1/x) < f_{0.4}(0) = 0$ for every $x \ge 1$.

On the other hand, $f'_{0.5}(x) > 0$ for all positive x, which gives $f_{0.5}(1/x) > f_{0.5}(0) = 0$ for every $x \ge 1$.

Next, we give a proof of (11). By (6), we have for $n \ge 227$,

$$\log p_{n+1} \le \log(n+1) + \log(\log(n+1) + \log\log(n+1) - 0.8). \tag{14}$$

The left-hand side inequality of (13) gives $\log(n+1) < \log n + \frac{1}{n+0.4}$, which in turn implies that

$$\log\log(n+1) < \log\log n + \log\left(1 + \frac{1}{(n+0.4)\log n}\right) < \log\log n + \frac{1}{(n+0.4)\log n}.$$

Applying this to (14), we obtain for $n \ge 227$,

$$\log p_{n+1} < \log n + \frac{1}{n+0.4} + \log \left(\log n + \log \log n - 0.8 + \frac{1+1/\log n}{n+0.4} \right)$$

$$< \log n + \log \log n + \frac{\log \log n - 0.8}{\log n} + \frac{1}{\log n} \cdot \frac{\log n + 1 + 1/\log n}{n+0.4}. \tag{15}$$

Now, $g(x) = \frac{\log x + 1 + 1/\log x}{x + 0.4}$ is a decreasing function for $x \ge 2$ with $g(e^{5.99}) \le 0.018$. Hence $g(x) \le 0.018$ holds for every $x \ge 400 > e^{5.99}$. Combined with (15), it yields that $\log p_{n+1} < U(n)$ for every $n \ge 400$. For every $140 \le n \le 399$ we check the inequality (11) with a computer. This completes the proof of (11).

To prove the inequality (12), first note that (7) gives for every $n \ge 1$,

$$\log p_{n+1} \ge \log(n+1) + \log(\log(n+1) + \log\log(n+1) - 1). \tag{16}$$

The right-side inequality of (13) gives $\log(n+1) > \log n + \frac{1}{n+0.5}$. Using (13) once again, we get, for $n \ge 2$,

$$\log\log(n+1) - \log\log n > \log\left(1 + \frac{1}{(n+0.5)\log n}\right) > \frac{1}{(n+0.5)\log n + 0.5}.$$

Applying this to (16), we arrive at

$$\log p_{n+1} > \log n + \log \left(\log n + \frac{1}{n+0.5} + \log \log n + \frac{1}{(n+0.5)\log n + 0.5} - 1 \right)$$

$$> \log n + \log \log n + \log \left(1 + \frac{\log \log n - 1}{\log n} \right).$$

Invoking (13) one more time, we get $\log p_{n+1} > V(n)$ for every $n \ge 2$.

Lemma 3.2. For every $n \ge 396$, we have

$$G(n, 2.1454) \ge \mathcal{F}(n, 0.25) \cdot U(n),$$
 (17)

and for every $n \geq 2$, we have

$$G(n,2) \le \mathcal{F}(n,1) \cdot V(n). \tag{18}$$

Here U(n) and V(n) are defined as in Lemma 3.1.

Proof. We start with the proof of (17). Setting $x = \log n$, the inequality (17) can be rewritten as

$$x + \log x - 1 + \frac{\log x - 2.1454}{x} \ge \left(1 - \frac{1}{x} + \frac{\log x}{4x^2}\right) \left(x + \log x + \frac{\log x - 0.8 + 0.018}{x}\right),$$

which is equivalent to

$$\left(\frac{3}{4}\log x + \frac{\log x}{x}\right) + \left(-2.1454 - \frac{\log^2 x}{4x} - \frac{\log^2 x}{4x^2}\right) + (0.8 - 0.018)\left(1 - \frac{1}{x} + \frac{\log x}{4x^2}\right) \ge 0.$$

The left-hand side is a sum of three increasing functions on the interval $[5.7, \infty)$ and at x = 5.99 the left-hand side is positive. So the last inequality holds for every $x \ge 5.99$; i.e., for every $n \ge 400$. A direct computation shows that the inequality (17) also holds for every $n \ge 399$.

Next, we give a proof of (18). It is easy to see that

$$x^{2} + \log x(\log x - 1) > \frac{x}{2} \log x(\log x - 1)$$

for every x > 0. Now, for $x \ge 1$, the last inequality is seen to be equivalent to

$$\left(1 - \frac{1}{x} + \frac{\log x}{x^2}\right) \frac{\log x - 1}{x + 0.5(\log x - 1)} \ge \frac{\log x - 2}{x}.$$

Since $\frac{\log^2 x}{x^2} \ge 0$ for every x > 0, we get

$$\frac{\log^2 x}{x^2} + \left(1 - \frac{1}{x} + \frac{\log x}{x^2}\right) \frac{\log x - 1}{x + 0.5(\log x - 1)} \ge \frac{\log x - 2}{x} \tag{19}$$

for every $x \ge 1$. Substituting $x = \log n$ in (19), we obtain the inequality (18) for every integer $n \ge 3$. We can directly check that (18) holds for n = 2 as well.

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. We use (4), (17) and (11) respectively to see that for every $n \ge 396$,

$$\vartheta(p_n)/n \ge G(n, 2.1454) \ge \mathcal{F}(n, 0.25) \ U(n) > \mathcal{F}(n, 0.25) \log p_{n+1}.$$

A direct computation shows that the left-hand side inequality of (9) also holds for every integer n with $2 \le n \le 395$.

In order to prove the right-hand side inequality of (9), we combine (5), (18) and (12), respectively, to get

$$\vartheta(p_n)/n \le G(n,2) \le \mathcal{F}(n,1) \ V(n) \le \mathcal{F}(n,1) \log p_{n+1}$$

for every $n \ge 198$. For smaller values of n, we use a computer.

4 Proof of Theorem 1.2

The right-hand side of (10) has been established already. To show the left-hand side, we start with the following lemma.

Lemma 4.1. For any $0 < \varepsilon < 1$, there exists $m_{\varepsilon} \in \mathbb{N}$ such that

$$G(n, 2.1454) \ge \mathcal{F}(n, 1 - \varepsilon) \cdot U(n) \tag{20}$$

holds for every $n \geq m_{\varepsilon}$. Here U(n) is defined as in Lemma 3.1.

Proof. Fix any $0 < \varepsilon < 1$. We denote a = 2.1454, b = 0.8 - 0.018 and set $x = \log n$ to transform the inequality (20) into

$$x + \log x - 1 + \frac{\log x - a}{x} \ge \left(1 - \frac{1}{x} + (1 - \varepsilon)\frac{\log x}{4x^2}\right)\left(x + \log x + \frac{\log x - b}{x}\right).$$

This is equivalent to

$$\left(\varepsilon \log x + \frac{\log x}{x}\right) + \left(-a - (1 - \varepsilon)\left(\frac{\log^2 x}{x} + \frac{\log^2 x}{x^2}\right)\right) + b\left(1 - \frac{1}{x} + (1 - \varepsilon)\frac{\log x}{x^2}\right) \ge 0.$$

Now, the left-hand side is a sum of three functions, each of which is strictly increasing for all sufficiently large x, and the limit of the left-hand side, as $x \to \infty$, is $+\infty$. Therefore we conclude that the last inequality holds for all sufficiently large x.

Proof of Theorem 1.2. For any $0 < \varepsilon < 1$, we have $m_{\varepsilon} \in \mathbb{N}$ such that (20) holds for every $n \ge m_{\varepsilon}$. We combine this with (4) and (11) to obtain that for every $n \ge n_{\varepsilon} := \max\{m_{\varepsilon}, 140\}$

$$\vartheta(p_n)/n \ge G(n, 2.1454) \ge \mathcal{F}(n, 1 - \varepsilon) U(n) \ge \mathcal{F}(n, 1 - \varepsilon) \log p_{n+1}.$$

This completes the proof.

5 Remarks

1. For every $n \ge 599$, we have

$$\frac{\pi(n)}{n} \ge \frac{1}{\log n} + \frac{1}{\log^2 n},$$

which was found by Dusart [3]. Using this and a computer, we get

$$\frac{\pi(n)}{n} \ge \frac{1}{\log n - 1} \left(1 - \frac{\log \log n}{4 \log n} \right)$$

for every integer $n \ge 83$. Hence, (2) is an improvement of (1).

2. The bounds given in (2) are particularly useful for comparing $\vartheta(p_n)/n$ with $\log p_{n+1}$. To see a numerical example, we use a computer to find that for $n \geq 23$ the relative error in approximating $\vartheta(p_n)/n$ with $\mathcal{F}(n,0.25)$ is less than 5% and for $n \geq 114$ it is less than 2%. An important feature of (2) is that it holds even for very small values of n.

Acknowledgements

I am thankful to Mridul Nandi (Indian Statistical Institute, Kolkata, India) and Mehdi Hassani (University of Zanjan, Iran) for their valuable suggestions.

References

- [1] Axler, C. (2018). On the arithmetic and geometric means of the first *n* prime numbers, *Mediterr. J. Math.*, 15 (3), Art. 93, 21 pages.
- [2] Bonse, H. (1907). Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung, *Archiv Math. Phys.*, 3 (12), 292–295.
- [3] Dusart, P. (1998). Autour de la fonction qui compte le nombre de nombres premiers, PhD Thesis, Limoges.
- [4] Dusart, P. (1999). The k-th prime is greater than $k(\ln k + \ln \ln k 1)$ for $k \ge 2$, Math. Comp., 68 (225), 411–415.
- [5] Hassani, M. (2005). Approximation of the product $p_1p_2 \cdots p_n$, RGMIA Research Report Collection, 8 (2), Article 20.
- [6] Massias, J.-P., & Robin, G. (1996). Bornes effectives pour certaines fonctions concernant les nombres premiers, *J. Théor. Nombres de Bordeaux*, 8, 213–238.
- [7] Panaitopol, L. (2000). An inequality involving prime numbers, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.*, 11, 33–35.
- [8] Pósa, L. (1960). Über eine Eigenschaft der Primzahlen, Mat. Lapok, 11, 124–129.
- [9] Robin, G. (1983). Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith., 42 (4), 367–389.