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A remark on the Tribonacci sequences
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Abstract. One of the first extensions of the Fibonacci sequence are the Tribonacci sequences.
In the paper, some of their properties are discussed.
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1 Introduction and main result

The well-known Fibonacci sequence is an object of a lot extensions. One of the first of them is the
Tribonacci sequence, see [6], introduced in 1963 by Mark Feinberg, a fourteen-year-old student
in the ninth grade of the Susquehanna Township Junior High School (USA). He introduced the
Tribonacci sequence in three different forms. The first of them is:

1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499,
85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, ...

The second form, which is very often used (see, e.g., [9]), is

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890,
66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591,
29249425, 53798080, 98950096, 181997601, 334745777, 615693474, 1132436852,2082876103,
3831006429, ...

In practice, the third form coincides up to the enumeration with the second one:

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012,
121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425,
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53798080, 98950096, 181997601, 334745777, 615693474, 1132436852, 2082876103,
3831006429, ...

The formula for the n-th number is given by A. Shannon in [8].
Let the elements of each of the three Tribonacci sequence forms be denoted as {Ti}i≥0.

Theorem 1. For each natural number n ≥ 0,

Tn + Tn+13 + Tn+26 ≡ 0 (mod 3).

Proof. Let n = 0, 1, 2. Then, for the first Tribonacci sequence form we obtain

T0 + T13 + T26 = 1 + 1201 + 3311233 = 3312435 ≡ 0 (mod 3),

T1 + T14 + T27 = 1 + 2209 + 6090307 = 6092517 ≡ 0 (mod 3),

T2 + T15 + T28 = 1 + 4063 + 11201821 = 11205885 ≡ 0 (mod 3).

For the second Tribonacci sequence form we obtain

T0 + T13 + T26 = 0 + 504 + 1389537 = 1390041 ≡ 0 (mod 3),

T1 + T14 + T27 = 0 + 927 + 2555757 = 2556684 ≡ 0 (mod 3),

T2 + T15 + T28 = 1 + 1705 + 4700770 = 11205885 ≡ 0 (mod 3).

For the third Tribonacci sequence form we obtain

T0 + T13 + T26 = 0 + 927 + 2555757 = 2556684 ≡ 0 (mod 3),

T1 + T14 + T27 = 1 + 1705 + 4700770 = 11205885 ≡ 0 (mod 3),

T2 + T15 + T28 = 1 + 3136 + 8646064 = 8649201 ≡ 0 (mod 3).

Let us assume that the assertion is valid for each of the three Tribonacci sequence forms and
for the natural numbers less than or equal to n+ 2, i.e.,

Tn + Tn+13 + Tn+26 ≡ 0 (mod 3),

Tn+1 + Tn+14 + Tn+27 ≡ 0 (mod 3),

Tn+2 + Tn+15 + Tn+28 ≡ 0 (mod 3).

Then
Tn+3 + Tn+16 + Tn+29

= (Tn + Tn+1 + Tn+2) + (Tn+13 + Tn+14 + Tn+15) + (Tn+26 + Tn+27 + Tn+28)

= (Tn + Tn+13 + Tn+26) + (Tn+1 + Tn+14 + Tn+27) + (Tn+2 + Tn+15 + Tn+28)

≡ 0 (mod 3).
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It is suitable to re-write the above sequences as follows

1 1 1 3 5 9 17 31 57 105 193 355 653

1201 2209 4063 7473 13745 25281 46499 85525 157305 289329 532159 978793 1800281

... ... ... ... ... ... ... ... ... ... ... ... ...

0 0 1 1 2 4 7 13 24 44 81 149 274

504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 755476

... ... ... ... ... ... ... ... ... ... ... ... ...

0 1 1 2 4 7 13 24 44 81 149 274 504

927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 755476 1389537

... ... ... ... ... ... ... ... ... ... ... ... ...

respectively. Now, we can prove by the above manner that for each natural number n ≥ 0 for the
first sequence are valid:

T13n+3 ≡ 0 (mod 3),

T13n+5 ≡ 0 (mod 9),

T13n+8 ≡ 0 (mod 3),

T13n+9 ≡ 0 (mod 3);

for the second sequence are valid:
T13n ≡ 0 (mod 9),

T13n+1 ≡ 0 (mod 9),

T13n+8 ≡ 0 (mod 3),

T13n+10 ≡ 0 (mod 9);

and for the third sequence are valid:

T13n ≡ 0 (mod 9),

T13n+7 ≡ 0 (mod 3),

T13n+9 ≡ 0 (mod 9),

T13n+12 ≡ 0 (mod 9).

2 Conclusion

In a next research, we will check whether the 2-Fibonacci (see [1, 2, 5, 7]), 3-Fibonacci (see
[3, 5]) and 2-Tribonacci (see [4, 5]) sequences have similar properties.
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