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Abstract: Given integers ` > m > 0, monic polynomials Xn, Yn, and Zn are given with the
property that the complex number ρ is a zero of Xn if and only if the triple (ρ, ρ+m, ρ+ `) sat-
isfies xn + yn = zn. It is shown that the irreducibility of these polynomials implies Fermat’s last
theorem. It is also demonstrated, in a precise asymptotic sense, that for a majority of cases, these
polynomials are irreducible via application of Eisenstein’s criterion. We conclude by offering a
conjecture on powerful numbers.
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1 Introduction

In its original form, Fermat’s last theorem (FLT) asserts that there are no positive solutions to the
Diophantine equation

xn + yn = zn (1)

if n > 2. As is well-known, Wiles [7], with the assistance of Taylor [6], gave the first complete
proof of FLT.

Given integers ` > m > 0, we consider monic polynomials Xn, Yn, and Zn with the property
that ρ is a zero of Xn if and only if (ρ, ρ + m, ρ + `) satisfies (1). It is shown, in a precise
asymptotic sense, that for a vast majority of cases, these polynomials are irreducible via direct
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application of Eisenstein’s criterion (the irreducibility of these polynomials is equivalent to FLT).
Although the results fall far short of a full proof of FLT – in fact, the possibility is left open that
there are infinitely-many cases to consider – they are nevertheless appealing given that: (i) they
are elementary in nature; (ii) they apply to all values of n (including n = 2); and (iii) they apply
to the well-known first-case and second-case of (1). We conclude by offering a Goldbach-type
conjecture on powerful numbers.

2 The auxiliary polynomials

For fixed integers ` > m > 0, let

Xn(t) = Xn(t, (`,m)) := tn −
n∑
k=1

(
n

k

)
tn−k(`−m)Qk(`,m), (2)

Yn(t) = Yn(t, (`,m)) := tn +
n∑
k=1

(−1)k
(
n

k

)
tn−k`Qk(m,m− `), (3)

and

Zn(t) = Zn(t, (`,m)) := tn +
n∑
k=1

(−1)k
(
n

k

)
tn−k

(
`k + (`−m)k

)
, (4)

where

Qk(`,m) :=
`k −mk

`−m
=

k−1∑
i=0

`k−1−imi, k = 1, . . . , n. (5)

Proposition 2.1. If ρ ∈ C, then (ρ, ρ + m, ρ + `) ∈ C3 satisfies (1) if and only if Xn(ρ) =

Yn(ρ+m) = Zn(ρ+ `) = 0.

Proof. Following the binomial theorem, notice that

ρn + (ρ+m)n = (ρ+ `)n

⇐⇒ρn −
n∑
k=1

(
n

k

)
ρn−k(`k −mk) = 0

⇐⇒ρn −
n∑
k=1

(
n

k

)
ρn−k(`−m)Qk(`,m) = 0

⇐⇒Xn(ρ) = 0.

If σ := ρ+m, then

(σ −m)n + σn = (σ + (`−m))n

⇐⇒σn +
n∑
k=1

(
n

k

)
σn−k

(
(−m)k − (`−m)k

)
= 0

⇐⇒σn +
n∑
k=1

(−1)k
(
n

k

)
σn−k

(
mk − (−1)k(`−m)k

)
= 0

23



⇐⇒σn +
n∑
k=1

(−1)k
(
n

k

)
σn−k

(
mk − (m− `)k

)
= 0

⇐⇒σn +
n∑
k=1

(−1)k
(
n

k

)
σn−k`Qk(m,m− `)

⇐⇒Yn(σ) = Yn(ρ+m) = 0.

If τ := ρ+ `, then

(τ − `)n + (τ + (m− `))n = τn

⇐⇒τn +
n∑
k=1

(
n

k

)
τn−k

(
(−`)k + (m− `)k

)
= 0

⇐⇒τn +
n∑
k=1

(−1)k
(
n

k

)
τn−k

(
`k + (−1)k(m− `)k

)
= 0

⇐⇒τn +
n∑
k=1

(−1)k
(
n

k

)
τn−k

(
`k + (`−m)k

)
= 0

⇐⇒Zn(τ) = Zn(ρ+ `) = 0,

and the result is established.

It is well-known that if (x, y, z) ∈ N3 satisfies (1), with x < y < z, gcd(x, y, z) = 1, and
(`,m) := (z − x, y − x), then gcd(`,m) = 1 [5, p 2]. Thus, there is no loss in generality in
assuming that gcd (`,m) = 1. Unless otherwise stated, it is assumed herein that gcd (`,m) = 1.

Recall that a polynomial f with coefficients from Z is called reducible (over Z) if f = gh,
where g and h are polynomials of positive degree with coefficients from Z. If f is not reducible,
then f is called irreducible (over Z).

Proposition 2.2. The polynomials Xn, Yn, and Zn are simultaneously irreducible or reducible.

Proof. Following Proposition 2.1, notice that

Xn(ρ−m) = 0⇐⇒ (ρ−m)n + ρn = (ρ−m+ `)n

⇐⇒ (ρ−m)n + ρn = (ρ+ `−m)n

⇐⇒ Yn(ρ) = 0.

Thus,
Xn(t−m) =

∏
{ρ∈C|Yn(ρ)=0}

(t− ρ) = Yn(t).

A similar argument demonstrates that Xn(t− `) = Zn(t). Thus, the polynomials Xn, Yn, and Zn
are simultaneously irreducible or reducible.

Given

f(t) = tn −
n∑
i=1

ait
n−i ∈ C[t], (6)
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let

fk(t) := tk −
k∑
i=1

ait
k−i, 0 ≤ k ≤ n, (7)

where the sum on the right is defined to be zero whenever it is empty. Notice that f = fn,
f(t) = tfn−1(t)− an, and (fj)k = fk, 0 ≤ k ≤ j.

Lemma 2.3 (Remainder theorem). If f is the polynomial defined in (6), fk is the polynomial
defined in (7), and r ∈ C, then

f(t) = (t− r)
n−1∑
k=0

fk(r)t
n−1−k + f(r).

Proof. Proceed by induction on n. If n = 1, then

f(t) = t− a1 = t− r + r − a1 = (t− r) + f(r),

and the base-case is established.
Assume that the result holds for every polynomial of degree j, where j ≥ 1. If f(t) =

tj+1 −
∑j+1

i=1 ait
j+1−i, and r ∈ C, then

f(t) = tfj(t)− aj+1

= t

(
(t− r)

j−1∑
k=0

(fj)k(r)t
j−1−k + fj(r)

)
− aj+1

= (t− r)
j−1∑
k=0

fk(r)t
j−k + tfj(r)− aj+1

= (t− r)
j−1∑
k=0

fk(r)t
j−k + (t− r)fj(r) + rfj(r)− aj+1

= (t− r)
j∑

k=0

fk(r)t
j−k + f(r),

establishing the result when n = j + 1. The entire result now follows by the principle of mathe-
matical induction.

If f(t) = tn −
∑n

i=1 ait
n−i ∈ Z[t] and r ∈ Z is a zero, then, following Lemma 2.3,

f(t) = (t− r)
n−1∑
k=0

fk(r)t
n−1−k,

i.e., f is reducible over Z. The connection to FLT is now apparent.

Corollary 2.3.1. If (x, x+m,x+ `) ∈ N3 satisfies (1), then Xn, Yn, and Zn are reducible.
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3 Main results

Corollary 2.3.1 provides a direct method of proving FLT; indeed, if it can be shown that any
of the polynomials Xn, Yn, or Zn is irreducible, then there is no solution to (1) of the form
(x, x + m,x + `) ∈ N3. The following result is a well-known irreducibility test (see, e.g.,
Prasolov [4, Theorem 2.1.3]) and follows from a result due to Schönemann (Cox [1]).

Theorem 3.1 (Eisenstein’s criterion [EC]). Let f(t) =
∑n

k=0 akt
n−k ∈ Z[t]. If there is a prime

number p such that: p - a0; p | ak, k = 1, . . . , n; and p2 - an, then f is irreducible over Z.

The following result is well-known in the literature on FLT (see Ribenboim [5, (3B)(5), p. 81]
and references therein).

Lemma 3.2. Let n > 1 and p be a prime. If gcd(`,m) = 1, p - n, and p | (` − m), then
p - Qn(`,m).

If k is an integer and p is a prime, then we say that k is singly divisible by p, denoted by p || k,
whenever p | k, but p2 - k. An integer that is singly divisible by two is called singly even.

Theorem 3.3. Let Xn be defined as in (2). If there is a prime p such that p || ` −m and p - n,
then Xn is irreducible.

Proof. Immediate in view of (2), Theorem 3.1, and Lemma 3.2.

Remark 3.4. The import of Theorem 3.3 is amplified by the following observation: a positive
integer a is called powerful if p2 divides a for every prime p that divides a; otherwise, it is called
nonpowerful.

Golomb [2] proved that if κ(t) denotes the number of powerful numbers in the interval [1, t],
then

ct1/2 − 3t1/3 ≤ κ(t) ≤ ct1/2, (8)

where c := ζ(3/2)/ζ(3) ≈ 2.1733 and ζ denotes the Riemann zeta function. Consequently, the
set of powerful numbers has natural density zero, i.e., κ(n)/n −→ 0 as n −→∞.

If
∆(t) := {δ = `−m ∈ N | 1 ≤ m < ` ≤ t, δ powerful, gcd (`,m) = 1},

then |∆(t)| = κ(t). Thus, |∆(t)|/t −→ 0 as t −→∞.

In case `−m is powerful, we offer the following results.

Theorem 3.5. Let Yn be defined as in (3). If there is a prime p such that p || ` and p - n, then Yn
is irreducible.

Proof. Immediate in view of (3), Theorem 3.1, and Lemma 3.2.

Theorem 3.6. Let Zn be defined as in (4). If 2`−m is singly even, then Zn is irreducible.
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Proof. If 2` −m is singly even, then ` is odd, m is even, and there is an odd integer q such that
2`−m = 2q. As a consequence, m = 2(`− q) ≡ 0 (mod 4). As ` and `−m are odd, notice that(

`k + (`−m)k
)
≡ 0 (mod 2), k = 1, . . . , n.

Moreover, since

`n + (`−m)n = 2`n +
n∑
k=1

(−1)k
(
n

k

)
`n−kmk

it follows that (`n + (`−m)n) ≡ 2`n 6≡ 0 (mod 4), i.e., Zn is irreducible via EC with p = 2.

Example 3.7. If (`,m) = (9, 4), n ≥ 2, n 6≡ 0 (mod 5), then Xn is irreducible via EC with
p = 5; otherwise, if n ≡ 0 (mod 5), then Zn is irreducible via EC with p = 2 since 2(9)−4 = 14

is singly even.

Example 3.8. For a positive integer n, let P (n) := {(`,m) ∈ R2 | 0 ≤ m < ` ≤ n, gcd (`,m) =

1}. Figure 1 depicts the set P (500).
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Figure 1. The set P (500). Note that ‘nz’ stands for ‘nonzero’.

Let p be a prime less than 500. If p || ` −m, then Xn is irreducible for every positive integer n
satisfying n ≥ 500, i.e., there is no solution to xn + yn = zn of the form (x, x+m,x+ `) ∈ N3.
Figure 2 contains the remaining elements of P (500) that can not be eliminated in this manner (i.e.,
following Theorem 3.3). Figure 3 contains all pairs that can not be eliminated from Theorems 3.3
and 3.5. Finally, Figure 4 contains all elements that can not be eliminated from Theorems 3.3,
3.5, and 3.6.
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Figure 2. Remaining pairs after Theorem 3.3 applied.
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Figure 3. Remaining pairs after Theorems 3.3 and 3.5 are applied.

Example 3.9. If (`,m) = (9, 5), then the irreducibility of the auxiliary polynomials cannot be
asserted from the previous results.

As mentioned in the introduction, the above results leave the possibility that there are infinitely-
many cases to resolve. The following conjecture, which generalizes Example 3.9, would not only
establish this, but is seemingly of great import in and of itself [3].
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Figure 4. Remaining pairs after Theorems 3.3, 3.5, and 3.6 are applied.

Conjecture 3.10. If a > 1 is powerful, then there is a prime p and a powerful number b such that
a = b+ p.
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