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Abstract: The aim of this paper is to present some results on the use of the generalized Stirling
transform. First, we establish a generalization of a recent Guo–Qi’s identity for Bell numbers.
Finally, a new explicit formula for Euler numbers are given.
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1 Introduction

Following the usual notations (see [3]), the falling factorial xn (x ∈ C) is defined by x0 = 1,

xn = x (x− 1) · · · (x− n+ 1) for n > 0 and, the rising factorial denoted by xn, is defined by
xn = x (x+ 1) · · · (x+ n− 1) with x0 = 1. The (signed) Stirling numbers of the first kind
s (n, k) are the coefficients in the expansion

xn =
n∑

k=0

s (n, k)xk.
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The Stirling numbers of the second kind, denoted by
{
n
k

}
, are the coefficients in the expansion

xn =
n∑

k=0

{
n

k

}
xk.

The Stirling numbers of the second kind
{
n
k

}
count the number of ways to partition a set of

n elements into exactly k nonempty subsets. The number of all partitions is the Bell number Bn,
thus

Bn =
n∑

k=0

{
n

k

}
.

The polynomials

Bn (x) =
n∑

k=0

{
n

k

}
xk

are called Bell polynomials or exponential polynomials. The exponential generating functions
are respectively ∑

n≥k

s (n, k)
zn

n!
=

1

k!
(ln (1 + z))k ,

∑
n≥k

{
n

k

}
zn

n!
=

1

k!
(ez − 1)k

and ∑
n≥0

Bn (x)
zn

n!
= exp (x (ez − 1)) .

Recently, the third author [6] developed a methodology for computing the Stirling transform
and the inverse Stirling transform. More precisely, given a sequence am := a0,m (m ≥ 0), we
construct an infinite matrix S := (an,m) as follows:

1. The first row a0,m of the matrix is the initial sequence; the first column bn := an,0 (n ≥ 0)

is called the final sequence, and each entry an,m is given recursively by

an+1,m = an,m+1 +man,m. (1)

2. Conversely, if we start with the final sequence, the matrix S can be recovered by the recur-
sive relations

an,m+1 = an+1,m −man,m. (2)

Theorem 1. [6] For n,m ≥ 0, we have

an,m =
m∑
k=0

s (m, k) bn+k =
n∑

k=0

{
n+m

k +m

}
m

am+k. (3)

Recall that the r-Stirling numbers of the second kind (see [1] for more details)
{
n
k

}
r

count the
number of partitions of a set of n objects into exactly k nonempty, disjoint subsets, such that the
first r elements are in distinct subsets. The exponential generating function is given by∑

n≥k

{
n+ r

k + r

}
r

zn

n!
=

1

k!
erz (ez − 1)k .
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Theorem 2. [6] Suppose that the initial sequence a0,m+r has the following exponential generating
function Ar (z) =

∑
k≥0

a0,k+r
zk

k!
. Then the sequence {an,r}n of the r-th columns of the matrix S

has an exponential generating function Br (z) =
∑
n≥0

an,r
zn

n!
, given by

Br (z) = erzAr (e
z − 1) . (4)

Theorem 3. [6] Suppose that the final sequence an+r,0 has the following exponential generating
function Br (z) =

∑
k≥0

ak+r,0
zk

k!
. Then the sequence {ar,m}m of the r-th rows of the matrix S has

an exponential generating function Ar (z) =
∑
m≥0

ar,m
zm

m!
, given by

Ar (z) = Br (ln(1 + z)) . (5)

2 On Guo–Qi’s identity for Bell numbers

The (unsigned) Lah numbers
⌊
n
k

⌋
are the coefficients expressing rising factorials in terms of falling

factorials

xn =
n∑

k=0

⌊
n

k

⌋
xk and xn =

n∑
k=0

(−1)n−k
⌊
n

k

⌋
xk

or ⌊
n

k

⌋
=

n∑
j=k

(−1)n−j s (n, j)
{
j

k

}
.

The (unsigned) Lah numbers
⌊
n
k

⌋
count the number of partitions of a set of n elements into

exactly k ordered lists ⌊
n

k

⌋
=

n!

k!

(
n− 1

k − 1

)
for n ≥ k ≥ 1.

Let Ln,k denote the (signed) Lah numbers [2]

Ln,k := (−1)n
⌊
n

k

⌋
.

The exponential generating functions is∑
n≥k

⌊
n

k

⌋
zn

n!
=

1

k!

(
z

1− z

)k

.

Setting the final sequence an,0 = (−1)nBn (x) in (2), we get the following matrix

S =



1 −x x2 + 2x −x3 − 6x2 − 6x · · ·
−x x2 + x −x3 − 4x2 − 2x x4 + 9x3 + 18x2 + 6x · · ·

x2 + x −x3 − 3x2 − x x4 + 7x3 + 10x2 + 2x
...

−x3 − 3x2 − x x4 + 6x3 + 7x2 + x
...

x4 + 6x3 + 7x2 + x
...

...


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Since

B0 (z) =
∑
k≥0

Bk (x)
(−z)k

k!

= exp
(
x
(
e−z − 1

))
.

It follows from (5) that the initial sequence has an exponential generating function, given by

A0 (z) = B0 (ln(1 + z))

= exp

(
x

(
1

1 + z
− 1

))
(6)

=
∑
n≥0

Ln (x)
zn

n!
,

where Ln (x) denotes the (signed) Lah polynomials defined by

Ln (x) :=
n∑

k=0

Ln,k x
k.

Now, from (6) we have∑
n≥0

Ln (x)
zn

n!
= exp

(
x

(
1

1 + z
− 1

))

=
1

ex
+

1

ex

∑
k≥1

(
1

1 + z

)k
xk

k!

=
1

ex
+

1

ex

(∑
k≥1

(∑
n≥0

(−1)n (k − 1 + n)!

n! (k − 1)!
zn

)
xk

k!

)

=
1

ex
+
∑
n≥0

(
1

ex

∑
k≥0

(−1)n (k + n)!

k! (k + 1)!
xk+1

)
zn

n!

Equating the coefficients of
zn

n!
, we get the Dobiński’s formula for the n-th (n ≥ 1) signed Lah

polynomials

Ln (x) =
(−1)n

ex

∑
k≥0

(k + n)!

k! (k + 1)!
xk+1, n ≥ 1.

A variation of Dobiński’s formula in terms of Kummer confluent hypergeometric functions is
given by

Ln (x) =
(−1)n x

ex

∑
k≥0

(n+ 1)k

2k
xk

k!

=
(−1)n n!x

ex
1F1

(
n+ 1

2
;x

)
,

where 1F1

(
a

b
; z

)
denotes the Kummer confluent hypergeometric functions, defined by

∑
n≥0

an

bn
zn

n!
.
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Theorem 4. For n,m ≥ 0, we have

m∑
k=0

s (m, k) (−1)n+k Bn+k (x) =
n∑

k=0

{
n+m

k +m

}
m

Lm+k (x) . (7)

If we set m = 0 in (7), we have

Bn (x) =
n∑

k=0

{
n

k

}
(−1)n Lk (x) (8)

=
x

ex

n∑
k=0

{
n

k

}
n!1F1

(
n+ 1

2
;x

)
.

Notice that the Guo–Qi’s identity for Bell numbers [4, 5] is obtained by setting x = 1 in (8).
When n = 0 in (7) we get the inverse Stirling transform for Bell polynomials

Lm (x) =
m∑
k=0

s (m, k) (−1)k Bk (x) .

Now, setting n = 1 in (7), we get

m∑
k=0

s (m, k) (−1)k+1Bk+1 (x) = mLm (x) + Lm+1 (x)

=
m∑
k=0

(−1)m+1 k!

(
m

k

)2

xm−k+1.

3 An explicit formula for Euler numbers

The Euler numbers En can be defined by the exponential generating function

1

cosh z
=
∑
n≥0

En
zn

n!
.

It is well-known that En are a sequence of integers with E2n+1 = 0 for n ≥ 0. There are a number
of explicit formulae for En, for example (see also [7])

E2n = i
2n+1∑
k=1

k∑
j=0

(−1)j

2kikk

(
k

j

)
(k − 2j)2n+1 ,

where i denotes the imaginary unit with i2 = −1. In this section, we propose a new explicit
formula for the Euler numbers

En = −
n∑

k=0

k!

2k

{
n

k

}
Re
(
(i− 1)k+1

)
, (9)

where Re(z), denotes the real part of z.
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Now, If we take the final sequence an,0 = En, in (2), we get the following matrix

T =



1 0 −1 3 −6 · · ·
0 −1 1 3 −24 · · ·
−1 0 5 −15 −6 · · ·
0 5 −5 −51 336 · · ·
5 0 −61 183 714 · · ·
0 −61 61 1263 −7944 · · ·
−61 0 1385 −4155 −35286 · · ·
0 1385 −1385 −47751 294816 · · ·
...

...
...

...
... . . .


.

It follows from (5) that the initial sequence has an exponential generating function given by∑
n≥0

Rn
zn

n!
=

1

cosh (ln(1 + z))
(10)

=
2 (1 + z)

2 + 2z + z2
. (11)

Since
2 (1 + z)

2 + 2z + z2
=

1

z + 1− i
+

1

z + 1 + i
, we have∑

n≥0

Rn
zn

n!
= −

∑
n≥0

1

2n+1

(
(−1 + i)n+1 + (−1− i)n+1) zn

= −
∑
n≥0

1

2n
Re
(
(i− 1)n+1

)
zn.

Equating the coefficient of zn, we get

Rn = −n!

2n
Re
(
(i− 1)n+1

)
and by the binomial formula we have

Rn =
n!

2n

b(n+1)/2c∑
k=0

(−1)n−k
(
n+ 1

2k

)
,

where bxc denotes the integral part of x, that is, the greatest integer not exceeding x.

For n,m ≥ 0, we have
m∑
k=0

s (m, k)En+k =
n∑

k=0

{
n+m

k +m

}
m

Rm+k. (12)

Now, setting m = 0 in (12), we get (9). Putting n = 0 in (12), we have the following recursive
formula Euler numbers involving the Stirling numbers of the first kind

m∑
k=0

s (2m, 2k)E2k=
(2m)!

22m

m∑
k=0

(−1)k
(
2m+ 1

2k

)

=


(−1)b

m
2 c (2m)!

2m
, m even,

(−1)b
m−1

2 c+1 (2m)!

2m
, m odd.
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Thus, for example, when m = 0, 1, 2, 3, we obtain

E0 = 1,

E2 = −1,
11E2 + E4 = −6,

274E2 + 85E4 + E6 = 90.
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