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Abstract: The aim of this paper is to present some results on the use of the generalized Stirling
transform. First, we establish a generalization of a recent Guo—Qi’s identity for Bell numbers.
Finally, a new explicit formula for Euler numbers are given.
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1 Introduction

Following the usual notations (see [3]), the falling factorial 22 (z € C) is defined by 2% = 1,
a® =xz(x—1)---(x —n+1) forn > 0 and, the rising factorial denoted by 2", is defined by
2" = x(x+1)---(x+n—1) with 20 = 1. The (signed) Stirling numbers of the first kind
s (n, k) are the coefficients in the expansion

n

= Zs (n, k) z*.

k=0
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The Stirling numbers of the second kind, denoted by {Z} , are the coefficients in the expansion

S

k=0

The Stirling numbers of the second kind {Z} count the number of ways to partition a set of
n elements into exactly £ nonempty subsets. The number of all partitions is the Bell number B,

thus .
B, = Z{Z}

The polynomials

are called Bell polynomials or exponential polynomials. The exponential generating functions
are respectively

> s(n.k) Z—T = % (In (1 + 2))*,

n>k

n| 2" 1 k
St = (e - )
nzk{k}n! k!

and

n

ZB” (x) % =exp(z (e —1)).

n>0
Recently, the third author [6] developed a methodology for computing the Stirling transform
and the inverse Stirling transform. More precisely, given a sequence a,, := ag,, (m > 0), we
construct an infinite matrix S := (ay, ;) as follows:

1. The first row ay ,, of the matrix is the initial sequence; the first column b,, := a, o (n > 0)
is called the final sequence, and each entry a,, ,, is given recursively by

Ap+1,m = Gnm+1 + map,m- (1)

2. Conversely, if we start with the final sequence, the matrix S can be recovered by the recur-
sive relations

Anm+1 = Ant1,m — My m. (2)
Theorem 1. [6] For n,m > 0, we have
Apm = is (mv k) bn—l—k = i nem AmAk- (3)
’ k=0 k=0 ktm) .,

Recall that the r-Stirling numbers of the second kind (see [1] for more details) {Z}T count the
number of partitions of a set of n objects into exactly £ nonempty, disjoint subsets, such that the
first  elements are in distinct subsets. The exponential generating function is given by

n+r|] 2" 1 k
Z 2 2_1 )
Z{k%—r}rn! K€ (e )

n>k
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Theorem 2. [6] Suppose that the initial sequence ag 4, has the following exponential generating

function A, (z) = Zaoﬁﬂi—f. Then the sequence {a,, }n of the r-th columns of the matrix S

k>0
n

has an exponential generating function B, (z) = E Unr > given by
n!
n>0

B, (z) =€A, (e —1). 4)

Theorem 3. [6] Suppose that the final sequence a,, .o has the following exponential generating

function B, (z) = Za’ﬁrw%’;' Then the sequence {a, m }nm Of the T-th rows of the matrix S has

k>0
m

an exponential generating function A, (z) = E rm ) given by
m!
m>0

A (2) =B, (In(1+2)). )

2 On Guo—Qi’s identity for Bell numbers

The (unsigned) Lah numbers LZJ are the coefficients expressing rising factorials in terms of falling

factorials . N
" = LZJ 2% and 22 = Z (=) " {ZJ z*
k=0 k=0
or .
n n—j . .]
HEDNEIRNTTRH
j=k

n
k

n nl/n—1
—— f >LkL>1.
M k!(k—l) orn k2

Let L,, ;, denote the (signed) Lah numbers [2]

The (unsigned) Lah numbers L J count the number of partitions of a set of n elements into

exactly k ordered lists

The exponential generating functions is

SlE-n ()

n>k

Setting the final sequence a,, o = (—1)" B, (x) in (2), we get the following matrix

1 —x 22+ 2 —23 — 622 — 62
— 2+ —3 — 422 — 21 xt + 923 + 1822 + 62

22+ —x3—322 -z x4+ 723 + 1022 + 22

23— 32—z zt + 623+ 722+

2+ 623+ 722+
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Since

It follows from (5) that the initial sequence has an exponential generating function, given by

Ao (2) = By (In(1 + 2))

1
= exp <x (1—1——,2 — 1)) (6)

=Y La(x)>

n>0

where L,, (x) denotes the (signed) Lah polynomials defined by

) = iLn’k Ik.
k=0

Now, from (6) we have

REC )

1 1 n(k=1+n) \ 2"
:—+—<Z< (Y —(nuk_l)!)Z)H)

1 1 (k+n) 2"
= — - L S Ay LS [
e "L <er U o ) !

k>0

Equating the coefficients of — , we get the Dobiniski’s formula for the n-th (n > 1) signed Lah

‘ b

(k4 n)! s
L, E > 1.
k' (k+1)! » =
k>0

polynomials

A variation of Dobiniski’s formula in terms of Kummer confluent hypergeometric functions is
given by

a® 2"

where | F} ( Z ; z> denotes the Kummer confluent hypergeometric functions, defined by ool
n>0 " on!
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Theorem 4. For n,m > 0, we have

m

S s (m, k) (<) By () = Z{” i m} Lonis (7). )

k=0 k=0 k+m

If we set m = 0 in (7), we have

B =3 L ®)

& 1
_ L {n}n!1F1 ( nt ;a:) .
er k 2
k=0

Notice that the Guo—Qi’s identity for Bell numbers [4, 5] is obtained by setting z = 1 in (8).
When n = 0 in (7) we get the inverse Stirling transform for Bell polynomials

Ly (z) = s(m, k) (—1)" By (z).

k=0

Now, setting n = 1 in (7), we get

S5 (m k) (—1)* B (2) = mLun (2) + L ()

m
k=0

3 An explicit formula for Euler numbers

The Euler numbers F,, can be defined by the exponential generating function

n

1 z
= E,—.
cosh z Z n!

n>0

It is well-known that £, are a sequence of integers with Es, 1 = 0 for n > 0. There are a number
of explicit formulae for E,,, for example (see also [7])

. _'2n+1k (_1>j k y s
2"_ZZZ2kZ'kk (k = 2j) ’

k=1 j=0 J

where 4 denotes the imaginary unit with i> = —1. In this section, we propose a new explicit
formula for the Euler numbers

E, - _Z’;—;{Z} Re ((i — 1)+1). ©)

where Re(z), denotes the real part of z.
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Now, If we take the final sequence a,, o = E,, in (2), we get the following matrix

1 0 -1 3 —6
0 -1 1 3 —24
-1 0 5 —15 —6
0 ) ) —51 336
T = b} 0 —61 183 714

0 —61 61 1263  —7944
—-61 0 1385  —4155 —35286
0 1385 —1385 —47751 294816

It follows from (5) that the initial sequence has an exponential generating function given by

2" 1
. 10
;R n!  cosh (In(1 + 2)) (10)
2(1+ =)
= 77 11
242z + 22 1
2142 1 1

Since -, we have

= -+
2422422 z41—1 z+1+4+1

n 1 n N n
DRty =D g (1) (=i -

n>0 n>0
1
= —22—n Re ((i — 1)"*) 2™
n>0
Equating the coefficient of 2", we get
|
R, = = Re ((i— 1))
and by the binomial formula we have
L(n+1)/2]
n! n—k n+1
}LL::__ -1 )
w2 0 ()

where |z | denotes the integral part of x, that is, the greatest integer not exceeding .
For n,m > 0, we have

D s (myk) B = Z{Ziﬁ} Rk (12)

k=0 k=0
Now, setting m = 0 in (12), we get (9). Putting n = 0 in (12), we have the following recursive
formula Euler numbers involving the Stirling numbers of the first kind

s (2m, 2k) Eop= (22’2!2 (1) (27722 1)

k=0 k=0
m| (2m)!
(—1)L2 (le), m even,
- m—1 2 !
(—1)L™ “2&), m odd



Thus, for example, when m = 0, 1, 2, 3, we obtain

11Ey + B, = —6,
274F, + 85E4 + Eg = 90.
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