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Abstract: The classical Fibonacci sequence is defined so that the first two terms are each equal
to 1, and each term after this is the sum of the two terms immediately before it. The golden ratio
is the ratio of the longer to shorter side of a rectangle with the property that if we remove a square
from the rectangle such that the remainder is also a rectangle, that the old and new rectangles
are proportional. Johannes Kepler showed that if we take the sequence of ratios of consecutive
Fibonacci numbers, the limit of this sequence is the golden ratio [5]. In this paper, we give a
higher dimension extension of Fibonacci sequences and golden ratios and provide a connection
between the two.
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1 Fibonacci-type sequences

Let m ∈ Z+ such that m ≥ 2, and let k ∈ Z+ such that 1 ≤ k < m. Let a1 = · · · = am = 1,
and for each i ∈ Z+ such that i > m, let ai = ai−k + ai−m. We will refer to this sequence as an
m-dimensional Fibonnaci-type sequence with index k.

Lemma 1.1. Every Fibonacci-type sequence is non-decreasing.

Proof. If i ≤ m, then ai = ai−1 = 1, so the lemma is true for the first m terms. Now let i > m,
and suppose aj ≥ aj−1 for all j ≤ i. Then
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ai+1 = ai−k+1 + ai−m+1

≥ ai−k + ai−m

= ai.

Hence the proof.

Let {ai} be a Fibonacci-type sequence. For each i ∈ Z+, let Ri =
ai+1

ai
. From a result by

Szczyrba in [4], the sequence {Ri} will have a limit if the greatest common divisor of k and m is
1. If the limit exists, we will call it the ratio limit of the sequence and denote it R.

Theorem 1.2. If the ratio limit R of a Fibonacci-type sequence exists, then it is the unique solution
to the equation xm − xm−k − 1 = 0 on the interval (1,∞).

Proof. Suppose R exists. Then the following is true.

ai+1 = ai−m+1 + ai−k+1
ai+1

ai
=

ai−m+1

ai
+

ai−k+1

ai
ai+1

ai
=

ai−m+1

ai−m+2

· · · ai−1
ai

+
ai−k+1

ai−k+2

· · · ai−1
ai

Ri =
1

Ri−m+1

· · · 1

Ri−1
+

1

Ri−k+1

· · · 1

Ri−1

R =
1

Rm−1 +
1

Rk−1

Rm = 1 +Rm−k

Rm −Rm−k − 1 = 0.

Next, we wish to show that there is only one solution to the above equation that could be the
ratio limit. Since ai ≥ ai−1 for all i, we know that R ≥ 1. Let f(x) = xm − xm−k − 1. Note that
f(1) = −1 6= 0, so R > 1. Next, consider the derivative of f :

f ′(x) = mxm−1 − (m− k)xm−k−1

= xm−k−1(mxk − (m− k)).

Then f ′(x) = 0 only when x = 0 < 1 or xk = m−k
m

< 1. So f is one-to-one on the interval
(1,∞), and thus the value of R is unique.

If m = 2 and k = 1, then this Fibonacci-type sequence is the standard Fibonacci sequence.
There are also two Fibonacci-type sequences in dimension 3, which are known as the Narayana’s
cows sequence and the Padovan sequence. The Padovan sequence has a ratio limit that is refered
to as the plastic number [3]. For a given dimension m, if k = m − 1, we obtain ratio limits that
Marohnić and Strmec̆ki have defined as harmonious numbers [2], and that Krc̆adinac refers to as
the k-th lower Fibonacci sequence [1].

86



m k Sequence Ratio limit
2 1 1, 1, 2, 3, 5, 8, 13, . . . (Fibonacci sequence) 1.1680 . . .

3 1 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (Narayana’s cows sequence) 1.4655 . . .

3 2 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, . . . (Padovan sequence) 1.3247 . . .

4 1 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, . . . 1.3802 . . .

4 2 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, . . . none
4 3 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 8, . . . 1.2207. . .

2 Square base extensions and Fibonacci-type sequences

Define a box A in Rm as a product
∏m

i=1[0, si], where si is a positive real number for each i. Each
si will be called a side length of A.

Define a square base extension B of A in dimension j and index k, denoted Ej,k(A), as the
product

∏m
i=1[ci, di], where [cj, dj] = [sj, sj + sk] and [ci, di] = [0, si] if i 6= j. Notice that the

projection of B onto its j-th and k-th coordinates gives a square of side length sk. Moreover,
A ∪B is a box in Rm.

Let A1 = [0, 1]m and let a1 = · · · = am = 1 denote the side lengths of A1. For each
i ∈ Z+, let Bi be the square base extension of Ai in dimension ((i− 1) mod m) + 1 with index
((m − k + i − 1) mod m) + 1. Let Ai+1 = Ai ∪ Bi, and let ai +m be the new side length of
Ai+1 (the side length in the (((i−1) mod m)+1)-th dimension). Then an = an−m+an−k, with
the first m terms equal to 1, so this is an m-dimensional Fibonacci-type sequence of index k.

The following corollary is a result of our choices of index in each step and the result of Lemma
1.1.

Corollary 2.1. In each step of the process that defines the sequence of boxes {Ai}, we have:

1. The side being extended is the shortest side,

2. The side is being extended by the length of the k-th longest side, and

3. The newly extended side is the longest side.

Figure 1. The Narayana (left) and Padovan (right) sequences,
represented using square base extensions
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3 Square base reductions and Golden-type ratios

Let A be a box in Rm. If sj > sk, define a square base reduction B of A in dimension j with index
k, denoted Rj,k(A), as the product

∏m
i=1[ci, di], where [cj, dj] = [sj − sk, sj] and [ci, di] = [0, si]

if i 6= j. Note that the projection of B onto its j-th and k-th coordinates is a square, and also note
that A−B is a box in Rn.

Let A =
∏m

i=1[0, bi] be a box in Rm such that bi < bi+1 for each i in 1, . . . ,m− 1, and b1 = 1.
Let B be the square base reduction with dimension m and index m − k, and let A′ = A−B.
Then A′ =

∏m
i=1[0, ri] for some r1, . . . , rm > 0. Suppose A′ is proportional to B. That is, there

exists a bijection h on {1, . . . ,m} and b > 0 such that bi = b · rh(i) for each i in 1, . . . ,m. Define
the m-dimensional golden-type ratio with index k to be this proportion b. Note that A and A′

have all sides lengths equal with one exception: bm is present only in A, and bm − bm−k is only
a length of A′. Moreover, bm − bm−k must be the shortest side of A′; otherwise 1 would be the
shortest side of both boxes and so c must equal 1, a contradiction. Listing both sets of sides in
decreasing order, we have the following:

bm bm−1 · · · b3 b2 b1(= 1)

bm−1 bm−2 · · · b2 b1(= 1) bm − bm−k

Then bi+1

bi
= b for any i in 1, . . . ,m− 1. In particular, b2 = b since b1 = 1.

Lemma 3.1. For the terms defined above, bi = bi−1 for each i in 1, . . . ,m− 1.

Proof. Note that b1 = 1 = b0. Now let i > 1 and suppose that for each j ≤ i we have bj = bj−1.
Then

bi+1

bi
=

bi
bi−1

bi+1

bi−1
=

bi−1

bi−2

bi+1 = bi.

So each dimension of A is a power of b.

Theorem 3.2. The m-dimensional golden-type ratio with index k is equal to the ratio limit of the
m-dimensional Fibonacci-type sequence with index k, when the ratio limit exists.

Proof. To find the value of b, we use the last two columns of the table above.

b2
b1

=
b1

bm − bm−k
b

1
=

1

bm−1 − bm−k−1

bm − bm−k = 1

bm − bm−k − 1 = 0.

Since the terms were listed in descending order, we know that b > 1. This is the same equation
we used to solve for R previously, so the solution is the same as that of R (and is thus unique).
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Figure 2. The ratio limits of the Narayana (left) and Padovan (right) sequences,
represented using square base reduction
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