Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 1, 19–23

Inequalities for φ and ψ functions (III)

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling IBPhBME, Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria and

Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria
e-mail: krat@bas.bg

Received: 3 February 2016 Accepted: 10 November 2016

Abstract: A new arithmetic function is defined and some of its properties are studied.

Keywords: Arithmetic function, Natural number, Prime number.

AMS Classification: 11A25.

1 Introduction

In a series of papers (see, eg., [1, 2, 3, 4, 5], the author studied some inequalities related to the well-known φ , σ and ψ arithmetic functions, that are defined for the natural number

$$n = \prod_{i=1}^{k} p_i^{\alpha_i},$$

where $k, \alpha_1, ..., \alpha_k, k \ge 1$ are natural numbers and $p_1, ..., p_k$ are different primes, by:

$$\varphi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1}(p_i - 1), \ \varphi(1) = 1,$$

$$\sigma(n) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i + 1} - 1}{p_i - 1}, \ \sigma(1) = 1,$$

19

$$\psi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1}(p_i + 1), \ \psi(1) = 1$$

(see, e.g. [6, 7]).

Here we use also the well known function

$$\omega(n) = k$$
,

for the above natural numbers n and k.

For example, in [4] it is proved that if m is an odd number and a is a natural number, then (a) if n = m, or $n = 2^a m$, where $a \ge 4$, then,

$$\varphi(n) > 2^{\omega(n)-1} \cdot \sqrt{n};$$

(b) if n = 2m, then,

$$\varphi(n) > 2^{\omega(n) - 2 - \frac{1}{2}} \cdot \sqrt{n};$$

(c) if $n = 2^a m$, where $2 \le a \le 3$, then:

$$\varphi(n) > 2^{\omega(n)-2} \cdot \sqrt{n}$$
.

Here, we formulate and prove three new inequalities, related to φ and ψ functions.

2 Main results

Theorem 1. Let $n \ge 3$ be an odd number. Then

$$\varphi(n) > \frac{n}{2^{\frac{\omega(n)}{2}}}.\tag{1}$$

Proof: Let n be a prime number. Then $\omega(n) = 1$ and obviously

$$\varphi(n) = n - 1 > \frac{n}{\sqrt{2}} = \frac{n}{2^{\frac{\omega(n)}{2}}}.$$
(2)

Let us assume that (1) is valid for some odd number n and let for the prime number $p \ge 3$: $p \notin \underline{set}(n)$. Then by induction and from (2)

$$\varphi(np) = \varphi(n)(p-1) > \frac{n}{2^{\frac{\omega(n)}{2}}}(p-1) > \frac{n}{2^{\frac{\omega(n)}{2}}} \cdot \frac{p}{\sqrt{2}} = \frac{np}{2^{\frac{\omega(n)+1}{2}}} = \frac{np}{2^{\frac{\omega(np)}{2}}}.$$

Let for the prime number $p \ge 3$: $p \in \underline{set}(n)$. Then $\omega(np) = \omega(n)$ and by induction

$$\varphi(np) = \varphi(n)p > \frac{n}{2^{\frac{\omega(n)}{2}}} \cdot p = \frac{np}{2^{\frac{\omega(np)}{2}}}$$

that proves the Theorem 1.

Corollary 1. If $n \ge 2$ is an even number, then

$$\varphi(n) > \frac{n}{2^{\frac{\omega(n)+1}{2}}}.$$

Theorem 2. For each natural number $n \geq 2$:

$$\varphi(n)\psi(n) \le n^2 - \omega(n). \tag{3}$$

Proof: Let n be a prime number. Then $\omega(n) = 1$ and

$$n^{2} - 1 = (n - 1)(n + 1) = \varphi(n)\psi(n).$$

Let us assume that (3) is valid for some natural number n and let for the prime number p: $p \notin \underline{set}(n)$. Then $\omega(np) = \omega(n) + 1$ and by induction we obtain:

$$(np)^{2} - \omega(np) - \varphi(np)\psi(np) = n^{2}p^{2} - \omega(n) - 1 - \varphi(n)\psi(n)(p^{2} - 1)$$

$$\geq n^{2}p^{2} - \omega(n) - 1 - (n^{2} - \omega(n))(p^{2} - 1)$$

$$= -\omega(n) - 1 + \omega(n)p^{2} + n^{2} - \omega(n) > 0.$$

Let for the prime number $p: p \in \underline{set}(n)$. Then $\omega(np) = \omega(n)$ and by induction

$$(np)^{2} - \omega(np) - \varphi(np)\psi(np) = n^{2}p^{2} - \omega(n) - \varphi(n)\psi(n)p^{2}$$

$$\geq n^{2}p^{2} - \omega(n) - (n^{2} - \omega(n))p^{2} = \omega(n)(p^{2} - 1) > 0.$$

So, the Theorem 2 is proven.

Let for the natural number n with the canonical form from the Introduction:

$$\underline{mult}(n) = p_1 p_2 \dots p_k.$$

In the general case, the following inequality is stronger than the previous one.

Theorem 3. For each natural number $n \geq 2$:

$$\varphi(n)\psi(n) \le n^2 - (\omega(n) - 1)\underline{mult}(n). \tag{4}$$

Proof: Let n be a prime number. Then $\omega(n) = 1$ and

$$n^{2} - (\omega(n) - 1)\underline{mult}(n) = n^{2} - 0.n > (n - 1)(n + 1) = \varphi(n)\psi(n).$$

Let n = pq for two different prime numbers. Then

$$(pq)^{2} - (\omega(pq) - 1)\underline{mult}(pq) - \varphi(pq)\psi(pq)$$

$$= p^{2}q^{2} - pq - (p-1)(p+1)(q-1)(q+1)$$

$$= p^{2}q^{2} - pq - p^{2}q^{2} + p^{2} + q^{2} - 1$$

$$> p^{2} + q^{2} - pq - 1 > 0.$$

Let $n = p^2$. Then

$$(p^2)^2 - (\omega(p^2) - 1) \underline{mult}(p^2) - \varphi(p^2) \psi(p^2)$$

$$p^4 - p^2(p^2 - 1) > 0.$$

Therefore the Theorem is valid for the natural numbers n, for which $\omega(n)=2$.

Let us assume that (4) is valid for some natural number n so that $\omega(n) \geq 2$ and let for the prime number p: $p \notin \underline{set}(n)$. Then $\omega(np) = \omega(n) + 1$, $\underline{mult}(np) = \underline{mult}(n)p$ and by induction we obtain:

$$(np)^{2} - (\omega(np) - 1)\underline{mult}(np) - \varphi(np)\psi(np)$$

$$= n^{2}p^{2} - \omega(n)\underline{mult}(n)p - \varphi(n)\psi(n)(p^{2} - 1)$$

$$\geq n^{2}p^{2} - \omega(n)\underline{mult}(n)p - (n^{2} - (\omega(n) - 1)\underline{mult}(n))(p^{2} - 1)$$

$$= n^{2}p^{2} - \omega(n)\underline{mult}(n)p - n^{2}p^{2} + n^{2} + (\omega(n) - 1)\underline{mult}(n)(p^{2} - 1)$$

$$= n^{2} - \omega(n)\underline{mult}(n)p + \omega(n)\underline{mult}(n)(p^{2} - 1) - \underline{mult}(n)(p^{2} - 1)$$

$$= n^{2} + \omega(n)\underline{mult}(n)(p^{2} - p - 1) - \underline{mult}(n)(p^{2} - 1)$$

$$\geq \underline{mult}(n)^{2} + \underline{mult}(n)(\omega(n)p^{2} - \omega(n)p - \omega(n) - p^{2} + 1)$$

$$= \underline{mult}(n)(\omega(n)p^{2} - \omega(n)p - \omega(n) - p^{2} + 1 + \underline{mult}(n))$$

(from $\omega(n) \ge 2$ it follows that $n \ge 6$ and hence $\underline{mult}(n) \ge 6$)

$$\geq \underline{mult}(n)(2p^2 - 2p - 2 - p^2 + 1 + 6)$$
$$= \underline{mult}(n)(p^2 - 2p + 5) > 0.$$

Let for the prime number $p: p \in \underline{set}(n)$. Then $\omega(np) = \omega(n)$, $\underline{mult}(np) = \underline{mult}(n)$ and by induction

$$(np)^{2} - (\omega(np) - 1)\underline{mult}(np) - \varphi(np)\psi(np)$$

$$= n^{2}p^{2} - (\omega(n) - 1)\underline{mult}(n) - \varphi(n)\psi(n)p^{2}$$

$$\geq n^{2}p^{2} - (\omega(n) - 1)\underline{mult}(n) - (n^{2} - (\omega(n) - 1)\underline{mult}(n))p^{2}$$

$$= (\omega(n) - 1)\underline{mult}(n)p^{2} - (\omega(n) - 1)\underline{mult}(n)$$

$$= (\omega(n) - 1)\underline{mult}(n)(p^{2} - 1) > 0.$$

So, the Theorem 3 is proven.

References

- [1] Atanassov, K. (1991) Inequalities for φ and σ functions. I. Bulletin of Number Theory and Related Topics, XV(1–3), 12–14.
- [2] Atanassov, K. (1991) Inequalities for φ and σ functions. II. Bulletin of Number Theory and Related Topics, XV(1–3), 15–18.
- [3] Atanassov, K. (1991) Inequalities for φ and σ functions. III. Bulletin of Number Theory and Related Topics, XV(1–3), 19–20.

- [4] Atanassov, K. (1996) Inequalities for φ and ψ functions (II), Octogon, 4(2), 18–20.
- [5] Atanassov, K. (2008) Inequalities related to φ , ψ and σ functions (III), *Number Theory and Discrete Mathematics*, 14(1), 16–24.
- [6] Mitrinovic, D. & Sándor, J. (1996) *Handbook of Number Theory*, Kluwer Academic Publishers
- [7] Nagell, T. (1950) Introduction to Number Theory, John Wiley & Sons, New York.