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Abstract: We show how a logarithmic inequality from the book [1] is connected to means, and
we offer new proofs, as well as refinements. We show that Karamata’s [2] and Leach—Sholander’s
[3] inequality are in fact equivalent.
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1 Introduction

In the very interesting problem book by K. Hardy and K. S. Williams [1] (see 3., page 1) one can
find the following logarithmic inequality:

Inz <1 z+1
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where z > 0,z # 1.
The proof of this surprisingly strong inequality is obtained in [1] by using a quite complicated
study of auxiliary functions.
We wish to note in what follows, how inequality (1) is related to the famous logarithmic mean
L, defined by
L(a,b) = ﬁ(a £b); L(a,a) = a, )
where a and b are positive real numbers. We will show that, in terms of logarithmic mean, (1) is

due in fact to J. Karamata [2]. For a survey of results on L and connected means, see e.g. [4, 5, 6].
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Let A(a,b) = 2

a and b. It is well known that, the logarithmic mean separates the geometric and arithmetic mean:

, G(a,b) = v ab denote the classical arithmetic, resp. geometric mean of

G <L <A, 3)

where G = G(a,b), etc. and a # b. For the history of this inequality and new proofs, see
[5, 15,17, 18, 19].

As inequality (3) is important in many fields of mathematics, (see e.g. [9, 12, 15]), the follow-
ing famous refinement of left side of (3), due to Leach and Sholander [3] should be mentioned

VG?2-A< L. 4)
Now, let us introduce the following mean K by

K(a,p) = LYo +bVa

— VOToVE 5
Vb+ a )

Letting = = i/% (a # b), inequality (1) can be written, by using (2) and (5):

L(a,b) > K(a,b). (6)

This inequality is due to Karamata [2].
We will show that inequality (6) refines (4). Also, we will give new proof and refinements to
this inequality.

2 Main results

The first result shows that (6) is indeed a refinement of (4):

Theorem 1. One has

L>K>VG2A. (7

Proof. We have to prove the second inequality of (7), i.e.,

Vb + b b
M> 3ab.(a+ ) 8)
Vb+ a 2
Putting @ = u?, b = v3, this inequality becomes
udv + vPu o ud + 03
— > uv- ,
u—+v 2
or after elementary transformations:
2(u? +v*)% > (u+v)? - (v +0%). )
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This inequality, which is interesting in itself, can be proved by algebraic computations; here
we present an analytic approach, used also in our paper [11]. By logarithmation, the inequality
becomes

In2+ 3In(u? +v?) — 3In(u +v) — In(u® + v*) = f(u) > 0. (10)

Suppose u > v. Also, for simplicity one could take v = 1 (since (9) is homogeneous).

6u 3 3u? (u—1)>3
/
Then one has f'(u) = 21 url Bil (W + D(w? £ 1) > 0, after elementary
computations, which we omit here. Thus f(u) > f(1) = 0, and the result follows. O

Remark 1. Inequality K > ~/G2A has been discovered by the author in 2003 [10]. For the
extensions of (9), see [10] and [16].

Theorem 2. Inequality L > K is equivalent to inequality

3AG
2A+ G

L> (11)

Proof. By letting a = u®, b = v the inequality L(a,b) > K(a,b) becomes the equivalent in-
equality L (u?, v*) > K (u®,v?). Now, remark that L(u?,v?) = L(u, v)- 9+ and K (u3, v%) =
%, so we get the relation

Suv(u? + v?)

Liu,v) > (u~+ v)(u? + uv + v?)

(12)

Let now u = /p,v = ,/q in (12), with p # ¢ positive real numbers. Remarking that

L(\/p. /1) = ﬁ; - L(p, q), after certain computations, (12) becomes

3 +
L(p,q) > 3yvPalp + 9) (13)

P+ 4q+./Pq
As \/pq = G(p,q),p+ q = 2A(p, q); inequality (13) may be written as

3AG

T 2A+ G (19

where L = L(p, q) etc. Clearly, this inequality is independents of the variables p and ¢, and could
take L = L(a,b), A = A(a,b), G = G(a,b) in inequality (14). This proves Theorem 2. O

Remark 2. For inequalities related to (11), see also [11].

Now, the surprise is that, though (6) is stronger than (4), inequality (4) implies inequality (6)!
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Theorem 3. One has

3 3AG
2
L>\/GA>2A+G. (15)

Proof. The first inequality of (15) is the Leach—Sholander inequality (4).
Now, remark that v/G2A = geometric mean of: G, G and A = v/G - G - A, which is greater
than the harmonic mean of these three numbers:

o[
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Therefore, inequality (15) follows. [l

Theorem 4. One has

J(A+G\ 3G(A+G)  3AG
L>\/( > )'G> A5G 241G (16)

Proof. The first inequality of (16) is a refinement of (4), and is due to the author [7]. See also
[13].

The second inequality of (16) follows by the same argument as the proof of Theorem 3: the

A+G A+G
2 0 20

3 _ 3G(A+G)
- 5G+ A

geometric mean of the numbers G is greater than their harmonic mean, which is

2 2 1
A+G + A+G + G

Finally, the last inequality is equivalent, after some computations with A% — 2AG + G? > 0,
or (A—G)*> 0. O

Remark 3. Connections of L with other means are studied in papers [6, 8, 14].
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