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Abstract: Let Fn and Ln be the nth Fibonacci and Lucas number, respectively. In this note, we
give a combinatorial proof for the following identity

Fkn+p = F k
nFp +

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p + FnF(k−i)n+p−1).
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1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0

and F1 = 1. A few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . .

We cannot go very far in the lore of Fibonacci numbers without encountering its companion Lucas
sequence (Ln)n≥0, which follows the same recursive pattern as the Fibonacci numbers, but with
initial values L0 = 2 and L1 = 1:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, . . . .
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The Fibonacci numbers are well-known for possessing wonderful and amazing properties
(consult [1] together with its very extensive annotated bibliography for additional references and
history). In 1963, the Fibonacci Association was created to provide enthusiasts an opportunity
to share ideas about these intriguing numbers and their applications. Also, in the issues of The
Fibonacci Quarterly we can find many new facts, applications, and relationships about Fibonacci
numbers.

The search for identities involving Fibonacci numbers has always been a popular area of
research. Among the several identities, we are interested in multiple angle formulas. The most
famous among them is the very useful identity F2n = FnLn. This identity can be easily rewritten
as F2n = F 2

n + 2FnFn−1 (recently, this identity appeared as Theorem 2.5 of [2]). For the Lucas
case, we have L2n = (5F 2

n + L2
n)/2. Below we present some general multiple angle formulas

Fkn = LkFk(n−1) − (−1)kFk(n−2)

=
1

2k−1
·
b(k−1)/2c∑

i=0

(
k

2i+ 1

)
5iF 2i+1

n Lk−1−2i
n

= Fn ·
b(k−1)/2c∑

i=0

(
k − 1− i

i

)
(−1)i(n+1)Lk−1−2i

n

=
k∑

i=0

(
k

i

)
FiF

i
nF

k−i
n−1

=
k∑

i=0

(
k

i

)
F−iF

i
nF

k−i
n+1

and

Lkn = LkLk(n−1) − (−1)kLk(n−2)

=
1

2k−1
·
bk/2c∑
i=0

(
k

2i

)
5iF 2i

n Lk−2i
n

=
k∑

i=0

(
k

i

)
LiF

i
nF

k−i
n−1.

We also have the general formula

Fkn+p =
k∑

i=0

(
k

i

)
Fp−iF

i
nF

k−i
n+1.

In this note, we shall give combinatorial proofs for “new” (to the best of authors’ knowledge)
multiple angle formulas. More precisely, we have the following

Theorem 1.1. For all positive integers n, k and p, it holds that

Fkn+p = F k
nFp +

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p + FnF(k−i)n+p−1). (1)
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As application, we prove that

Corollary 1.2. For all positive integers n, k and p, it holds that

Lkn+p = F k
nLp +

k∑
i=1

F i−1
n (Fn−1L(k−i)n+p + FnL(k−i)n+p−1). (2)

2 The proof of the theorem

2.1 Auxiliary facts

Before the proof, for the convenience of the reader, we shall recall combinatorial interpretations
for Fibonacci and Lucas numbers.

By a binary sequence, we call a finite word written using only 0’s and 1’s. A binary sequence
is said to be of type 0, if its first and last terms are equal to 0 and such that it does not contain two
consecutive 1’s.

Lemma 2.1. The number of binary words of type 0 with length n is equal to Fn.

Proof. Let pn be the number of binary words of type 0 with length n. Clearly, p1 = p2 = 1

({0, 00}). Also, such a binary word of type 0 either starts with 01 or 00. In the first case, it
remains 01 0 . . . 0︸ ︷︷ ︸

n−2 bits

having, by definition, pn−2 words. In the second case, we have 1 0 . . . 0︸ ︷︷ ︸
n−1 bits

which

are counted in pn−1 ways. In conclusion, pn = pn−1 + pn−2 which completes the proof.

A binary sequence is said to be of type 1 if there is no 1’s simultaneously at first and last
positions.

Lemma 2.2. The number of binary words of type 1 with length n is equal to Ln.

Proof. Let cn be the number of such words with length n. Clearly, c1 = 1 ({0}) and c2 = 3

({00, 01, 10}). Also, such a word either starts with 1 or 0. In the first case, the second and the
last bit are 0, so by the previous lemma, we have Fn−1 such words. In the case of starting with 0,
the last term can be 0 and so we have Fn words, or it ends with 1 and so we obtain Fn−1 words.
In conclusion, cn = Fn−1 + Fn + Fn−1 = Fn−1 + Fn+1. A straightforward calculation yields
cn−1 + cn = cn+1 which completes the proof.

As a consequence, we have that

Lemma 2.3. For all positive integer n, it holds that Ln = Fn−1 + Fn+1.

Now, we are ready to deal with the proof of theorem.
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2.2 The proof of Theorem 1.1

In order to simplify our argument, we shall rewrite (1) as

FpF
k
n = Fkn+p −

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p + FnF(k−i)n+p−1).

The left-hand side above counts the number of juxtapositions of k binary sequences of length
n and one sequence of length p, all of type 0, which is FpF

k
n (by Lemma 2.1). On the other hand,

we can count these juxtapositions excluding from the Fkn+p binary sequences of length n and
type 0 those ones having the bits 0 and 1 or 1 and 0 at positions in and in+1, for i ∈ {1, . . . , k},
respectively. In the case of a sequence having 0 and 1 at positions in and in+1, respectively (see
below)

0 . . . 0︸ ︷︷ ︸
in bits

1 0 . . . 0︸ ︷︷ ︸
(k−i)n+p−1 bits

we have F i
n juxtapositions of the first in block and F(k−i)n+p−1 for the last block (since 1 is fixed

at position in + 1). Thus, there exist F i
nF(k−i)n+p−1 juxtapositions. In the second case, that is, a

sequence having 1 and 0 at positions in and in+ 1, respectively (see below)

0 . . . 0︸ ︷︷ ︸
(i−1)n bits

0 . . . 0︸ ︷︷ ︸
n−1 bits

1 0 . . . 0︸ ︷︷ ︸
(k−i)n+p bits

we obtain F i−1
n for the first block, Fn−1 for the second one and F(k−i)n+p for the last one. In a

total of F i−1
n Fn−1F(k−i)n+p ways. In conclusion we have

k∑
i=1

(F i
nF(k−i)n+p−1 + F i−1

n Fn−1F(k−i)n+p)

excluded sequences and therefore

FpF
k
n = Fkn+p −

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p + FnF(k−i)n+p−1)

holds.

2.3 The proof of Corollary 1.2

By Lemma 2.3, we have that Lkn+p = Fkn+p−1 + Fkn+p+1. Thus, by Theorem 1.1,

Lkn+p = Fkn+p−1 + Fkn+p+1

= F k
nFp−1 +

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p−1 + FnF(k−i)n+p−2)

+F k
nFp+1 +

k∑
i=1

F i−1
n (Fn−1F(k−i)n+p+1 + FnF(k−i)n+p)
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= F k
n (Fp−1 + Fp+1) +

k∑
i=1

F i−1
n (Fn−1(F(k−i)n+p−1 + F(k−i)n+p+1)

+Fn(F(k−i)n+p−2 + F(k−i)n+p))

= F k
nLp +

k∑
i=1

F i−1
n (Fn−1L(k−i)n+p + FnL(k−i)n+p−1)

The proof is then complete.
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