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A note on a broken Dirichlet convolution
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Abstract: The paper deals with a broken Dirichlet convolution @ which is based on using the
odd divisors of integers. In addition to presenting characterizations of ®-multiplicative functions
we also show an analogue of Menon’s identity:

S e 1n) = du()[r(n) — 3ma(n)],

a (mod n)

(an)g=1
where (a,n)s denotes the greatest common odd divisor of a and n, ¢ (n) is the number of inte-
gers a (mod n) such that (a,n)g = 1, 7(n) is the number of divisors of n, and 75(n) is the number
of even divisors of n.
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1 Introduction

An arithmetical function is a complex-valued function whose domain is the set of positive integers
7. The Dirichlet convolution f * ¢ of two arithmetical function f and g is defined by

(fg)m) =3 F(@d)g(5):

din

where the summation is over all the divisors d of n (the term “divisor” always means ’positive
divisor”). The identity element relative to the Dirichlet convolution is the function ¢:
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0 otherwise

5(n):{1 it =1

An arithmetical function f has a convolution inverse if and only if f(1) # 0. The convolution
inverse of the zeta function ¢ ({(n) = 1 for any n € Z7) is the (classical) Mobius function p:

1 if n=1
p(n) =< (=1)* if nisaproduct of k distinct primes
0 if n has one or more repeated prime factors.

There are many fundamental results about algebras of arithmetical functions with a variety of
convolutions. The Davison— or K —convolution ([2], [10, Chapter 4]) f *x g of two arithmetical
functions f and g is defined by

(f #xc 9)(n) = 3 K(n.d)f(d (d)

din

where K is a complex-valued function on the set of all pairs of positive integers (n, d) with d|n.
If K = 1 then the K'-convolution is the Dirichlet convolution.

In [12] the C-algebra of extended arithmetical functions is considered as an incidence al-
gebra of a proper Mobius category. If a category C' is decomposition-finite (i.e. C' is a small
category in which for any morphism o, o € MorC, there are only a finite number of pairs
(B,7) € MorC x MorC such that v3 = «) then the C-convolution fv* g of two incidence func-
tions fand g (that is two complex-valued functions defined on the set MorC' of all morphisms

of C') is defined by:
(f9)a) =D (B

VB=c

The incidence function & defined by

~ 1 if o is an identity morphism
0 otherwise

is the identity element relative to the C'-convolution * . A Mobius category (in the sense of Leroux
[9, 1]) is a decomposition-finite category in which an incidence function fhas a convolution
inverse if and only if f(a) # (0 for any identity morphism «. The M&bius function 1 of a Mobius
category (' is the convolution inverse of the zeta function Z defined by E (o) = 1 for any morphism
a of C. Some useful characterizations of a Mobius category C' are given in [1, 7, 8, 9]. The set
of all incidence functions /(C') of a Mobius category C' becomes a C-algebra with the usual
pointwise addition and multiplication and the C'-convolution * .

The prime example of a Mobius category (with a single object) is the multiplicative monoid of
positive integers Z*, the convolution being the Dirichlet convolution and the associated Mobius
function being the classical Mobius function. A simple example of a proper Mobius category
is the category Cz with two objects 1 and 2 and with Homc, (1,1) = 2Z* — 1 (the set of odd
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positive integers), Homc, (1,2) = 2Z7 (the set of even positive integers), Homc,(2,1) = 0,
Home, (2,2) = {ids}, the composition of morphisms being the usual multiplication of integers.
In this case, the C'g-convolution (called the broken Dirichlet convolution in [12]) f@ g of two
incidence functions fand § is the following one:

neZt, (fog)(n)=f(n)jlids) + > F@)g); (f@g)(idy) = f(idz)g(idy).

vu=n; u#EN

uEQZ+—1

In [12] the elements of the incidence algebra I (Cy,) are called extended arithmetical functions.
Now,

A={] € I(Cy)|flidy) = f(1)}
is a subalgebra of the incidence algebra I(Cy) (see [12, Remark 4.2]). All elements of this sub-

algebra A are arithmetical functions and the convolution induced in A for arithmetical functions
is the following:

neZt, (fogm =fmgW)+ Y. (%)
dln; d<n

de2z+-1

It is straightforward to see that the above arithmetical functions convolution is a Davison

convolution with:
(n.d) — { 1 ifd=mnordisodd
0 otherwise.

It is clear that the incidence functions g, Z i € 1(Cy) are elements of the subalgebra .4 and,
as arithmetical functions, they coincide with the arithmetical functions d, ¢ and p, respectively,
where (see [12, Proposition 2.1])

wu(n) if nisodd
pe(n) = —1 if n=2%(k>0)
0 if niseven, n # 2~

2 Odd-multiplicative arithmetical functions

Following Haukkanen [3], an arithmetical function f is K-multiplicative (where K is the basic
complex-valued function of a Davison convolution) if

() f1) =1
(2) (¥n€ZY), f()K(n,d) = f(d)f(2)K(n,d), foralldjn.

In the case of a Mobius category C' we say that an incidence function f € [(C) is
C-multiplicative (see also [11]) if the following conditions hold:

(1) f() =1
(2) Va e MorC), fla)= f(B)f(v), forall (8,v) € MorC x MorC with v = a.
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Now, we call an arithmetical function f odd-multiplicative if
(1) f(1)=1

_ n(2 n _ on(2 n : :
(2) (VneZ"), f(n) = f"NILI(@)]"®, where n = 2" [] p™® is the canonical
factorization of n.

Proposition 2.1. Let f be an arithmetical function. The following statements are equivalent:
(1) fis odd-multiplicative;
(11) fis Cgy-multiplicative;
(1i1) fis Kg-multiplicative.

Proof. (i) = (ii). Let n = 2" I, p"®) be the canonical factorization of n and let n = vu
the product of two positive integers v and v such that « is odd. If v = 242 Hp p“®) and
v = 2v@) I, p'®) are the canonical factorizations of u and v respectively then u(2) = 0,
u(p) < n(p)and v(2) = n(2), v(p) = n(p) — u(p). It follows:

fn) = F@N T @® = ) T ) TP = f(u)fv).

p p p

(i) = (iii). Id d is an odd divisor of n then n = %d is a factorization of the morphism 7 in
Cg. Therefore f(n) = f(d)f(%). Since Kg(n,d) = 0if d is even, it follows:

F(n)Ky(n,d) = f(d) f(g)K®(n,d) for all d|n.

(iii) = (i). Letn = 2"(?) [1, p"P) be the canonical factorization of n. Since I, p"® is an
odd divisor of n it follows:

fn) = N ([ ]e"™).

It remains to be shown that f([ [, pP)) = [LLf (p)]™®) which immediately follows by induction.
[]

Proposition 2.2. Let f be an arithmetical function such that f(1) # 0. The following statements
are equivalent:

(1) fis odd-multiplicative;
(17) f(g® h) = fg® fhforany two arithmetical functions g and h;
(131) f(g®g) = fg® fgforany arithmetical function g;

(iv) frg = f® f, where

ro(n) = T(n)  if nisodd
S L+7(m) if n=2m, k>0, andmisodd

(7(n) is the number of divisors of n).
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dln; d<n
= f()g(h(1) + Y g(d)n(=)] = [f(g @ h)](n)
dn; d<n

(74) = (7). This is obvious.
(1i) = (iv). It is straightforward to check that { ® ( = 75. When we put g = ( in (7i7) we
obtain (iv).

(iv) = (i). Sincef()—f(l) »(1) = f(1)f(1) and f(1) # 0, it follows f(1) = 1

Now, let n = 2"(2) H p"™P) be the canonical factorization of n. We shall prove by induction on
s =n(2) + >, n(p) that

HOESICAN | )20

p

If s = 1 then obviously the equality holds. The equality holds also if n = 2¥. So, we assume
that s > 1 and in the same time that 7 (n) > 2. We have

f)re(n) =2f(n)+ > f(d
;*gz;fa’z

Since d|n and d # 1, n it follows, by the hypothesis of induction, that
F@) () = FE) @I rE) 1w = f) I w.
Taking into account that { ® ( = 7, we have
> F@DFE) = (mn) =2 f @) [,

de27+ -1

and therefore

]

An arithmetical function f is called multiplicative if f(mn) = f(m)f(n) whenever
(m,n) = 1. If f is multiplicative and f(1) # 0 (i.e. f is not identically zero) then f(1) = 1
and f~1(1) = 1. Here and in the next Proposition, f~! (g7, (fg)~') means the inverse of f
(g, fg) relative to the convolution ®. Note that Cyy being a Mobius category, f(1) # 0 assures
the existence of the convolution inverse 1.

Proposition 2.3. Let f be a multiplicative arithmetical function such that f(1) # 0. The following
statements are equivalent:
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(1) fis odd-multiplicative;
(i1) fg~' = (fg)~" for any arithmetical function g with g(1) # 0;
(i) fuo = £
(iv) f~Y(p™) = 0 for any odd prime p and any m > 1.

Proof. (i) = (i1). d = f6 = f (9®g‘1)—fg®fg‘1andfg‘1®fg=f(g‘1®g)=f5=5-
(i) = (ii1). fug = fCH=(fO) " =f1
(1) = (). f71 (™) = fF(™)e(®@™) = f(p™)up™) = 0if m > 1.

(iv) = (i). Let n = 2n( Hp p"®) be the canonical factorization of n. Since f is multiplica-

fn) = f@ NI re"@.

Now, 0 = (f @ f~Y)(p™) = f(p™) + f(p™ ') f~(p) for any odd prime p and m > 1. Thus,
[t (p) = —f(p)and f(p™) = f(p™ ") f(p). Therefore,

HOESICAN | )20

p

tive it follows:

3 The analogue of Menon’s identity

As a matter of course, the Dirichlet convolution leads us to the divisibility relation on Z* and the
convolution ® leads us to an "odd-divisibility” relation | defined by

m|gn if and only if m is odd and m/|n.

We denote the greatest common odd divisor of m and n by (m,n)s and let ¢g(n) be the
number of integers a (mod n) such that (a,n)g = 1.

Lemma 3.1. We have:

<1> (CL, n)@ - (CL +n, 2n)®;
(2) de(2n) = 2¢g(n);

Proof. (1).1f (a,n)g = d then d is odd, d|a and d|n. It follows that d|a + n and d|2n. Therefore,
d|(a 4+ n,2n)g. If d' is an odd integer such that d’'|a + n and d'|2n then d'|n and d’|a. It follows
(a + n,2n)gld, and in conclusion, (a,n)g = (a + n,2n)g.

(2) follows immediately from (1). O

By induction on k, using Lemma 3.1.(2), we obtain the following result.

Proposition 3.1. Let n = 2"m be the factorization of n such that m is odd. Then

s (n) = 2°¢(m),

where ¢ is Euler’s totient function.
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Corollary 3.1. We have

) ¢(n) if nisodd
dan) = { 2¢(n) if niseven.

Corollary 3.2. The arithmetical function ¢, is multiplicative.

In the theory of arithmetical functions a well known and elegant result is Menon’s identity
({eh:
Y. (a=1,n)=¢(n)r(n).

a (mod n)

(a,n)=1

In this section, using Menon’s generalized identity established by Haukkanen [5], we evaluate

Z (a—1,n)

a (mod n)

(a,n)e=1

the sum

which obviously becomes the above expression in the case if n is odd.

In [4], Haukkanen introduced the concept of a generalized divisibility relation (of type
f = {f, : pisprime}) satisfying certain conditions (see also [5, Section 2]). For such a gen-
eralized divisibility relation ?, f, are functions from Z* to Z* U {0} defined by: f,(a) is the
smallest integer i € {1,2,---a} such that p’ ¢ p* if such i exists, and f,(a) = 0 otherwise. Now,
(m,n), denotes the greatest element among the divisors d of m satisfying d ! n and ¢,(n) is the
number of integers a (mod n) such that (a,n), = 1 (see [5, Section 3]). In [5, Theorem 4.1],
Haukkanen established Menon’s generalized identity. In particular (see [5, (4.4)],

5 0L = ) 30 0
191

a (mod n)

(a,n)=1
where ng = ledp"(P).
Proposition 3.2. We have
1
> (1) = dolm)lr(n) — gra(n)],
a (mod n)
(a,n)g=1

where T5(n) is the number of even divisors of n.

Proof. Tt is straightforward to check that the relation |, is a Haukkanen’s generalized divisibility
relation of type f = (02,(, (, -+ ), where 0z(a) = 0 for any positive integer a. Since

Z d¢® Z Z 1=

d|n
d€2Z+ 1 d€2Z+ 1 de2z+—-1

= the number of odd divisors of n,
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and

P(d)na (ng=2"Dmy) o(d)ng
dlzn dog(nq) B dlzn d2ra@g(mg)
de27+ de27+
1
ndd Hp\d <1 — —>
=S 2 22(1_%):%@(@,

d|n d2nd(2)md Hp\d;p#? (]. — —) d|n

de2z+ D de2z+

it follows that

1) = b (n p(d)na
Z (CL 1’ ) ¢®( )%dgb@(nd)

a (mod n)

(an)p=1
_ s(d)n Sdna | _
=050l 2 G T L o)
de27+ -1 de2Z+
= bo(n)[r(n) — 57o(n)]
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