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Abstract
The simple function f(n)=in(an+1)a=135with n =
1,2,...,200, generated 615 primes in the modular ring Z, . 194

of these were twin primes. Values of n which yielded primes
for all f{n) were simply related to the number of primes in a
given range.
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1. Introduction

We have recently shown [4] that the simple function
f(n)=1n(an+1) (L1.T)

with ¢ =1,3,5, commonly predicts those rows which contain primes in the modular
ring Z;. To simplify the analysis, we used the right-end-digit (RED) criteria [4]; that
is, odd integers were separated into N* = 1,3,7,9 where the asterisk denotes the RED.
For 80 n values, about 500 primes were generated for RED = 7 alone. Similar results
were obtained for the other REDs.

Here we continue to analyse which values of a in Equation (1.1) produce rows
which contain primes inZ,. This modular ring has primes identified by

(6r +(i -3))in which r is the row and s the class as in Table 1. The primes are rep-

resented by (6r t l). Hence, with r = f{n), the a values which yield primes may be de-
termined.
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2. Calculation of a values which yield rows of primes
Equation (1.1) was used to calculate the rows of integers in Z for n =1 to 200.

For n =1 to 100, Table 2 shows which values of a produced prime-rows and
the class of the prime. The class of the prime is indicated by the subscripts 2 and 4.
These are almost 100 of the possible 16,384 combinations. All # values in Table 2
produced primes for one or more values of a, an exception being n = 43. However, if

a ="Tis used for n = 43, the primes 38959 (45 ) and 38699 ( 2 ) are produced. Some n
values produced primes for all values of a (1,3,5).

For n = 101 to 200, primes were produced for 91% of the n, exceptions being
n = 106,122,148,166,181,188,192.199 and 200. However, if larger values of a are
used (say 7,9), then primes are produced. For example, for n = 106 with @ = 9, primes
303689,303691 and 303053 are produced, while for n = 122, 3n(7n-1) produces

primes in classes 2 and4. Obviously, the a-function needs to be developed further
for a general solution.

For the 200 »n values, 615 primes were generated with @ = 1,3,5. The » values
which generated primes for all fn) could be expected to be related to the number of
primes, A, in the f{n) range (a = 1,3,5). This is evident in Table 3 where A/n is closely
related to n, and is almost linear for » > 30.
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Table 2: f{n) code
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Legend: 4=1n(n+1);B
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1n(5n-1).



Subscripts: 2 € 56;4 € 4.

Table 3: Values of n Wthh yleld pnmes for all j(n) a= 1,3 5 |

17 41 29 8
19 43 31
59 157 131 251 227 38 9.5
61 133 229
89 239 211 389 359 54 10.8
241
2789 8191 8009 13591 13411 1203 40.1
8011
4919 14519 14281 24121 23879 2030 50.8
54269 | 162007 | 161201 | 269741 | 268937 17755 132.5
82171 | 245519 | 244529 | 408869 | 407879 26506 160.6
245521
110017 | 328901 | 327757 | 547787 | 546643 35216 184.4

See Table 2 for the f{n) code

Certain n values have REDs which produce integers with a RED of 5, which, of
course, cannot be a prime when N > 5. For example, when

(Alm)* =6, (6x6-1)* =5, or (An))* = 4, (6x4+1)* =
as in Table 4. Obviously, f(n)={n(3n+1)potentially has a higher yield of primes.

Table 4: n* for which N* = 5

ﬂn) Ne 56 N e Z(,
—;-(n+ I) 1’336,8 Nil
Ln(Bn+1) 4,9 Nil
1n(3n-1) 1,6 Nil
Ln(5n+1) 2,7 38
Tn(5n-1) 38 27

Twin Primes
For a = 1,3,5, 194 twin primes were generated for n = 1 to 200. Values of n for the
various f(n) which yield twin primes are listed in Table 5. The f{n) yield the rows so

that the twin primes are obtained from (6 f(n)+1).
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Table 5: Twin Primes

fin) n values which yield twin primes

A=4n(n+1) | 1,2,4)9,25,27,32,37,42,49,55,62,74,119,140,142,147,175,195
B=Ln(3n+1) | 1,2,5,7,8,18,22,46,47,51,77,82,96,103,117,126,135,151,152,165
C

n
2

= %(3n -1) 1,2,3,7,13,14,17,20,30,34,44,52,55,59,63,68,69,70,72,73,79,97,105,

132,152,167,173,177,184,187

=+in(5n+1) | 1,66,100,121,151,156,160,161,170,184,195

1
+n(5n-1) | 1,4,6,15,21,31,39,54,61,71,109,116,149,160,164,185

Z rows of twin primes have been analysed previously [1,2] and a method for predict-

ing them is now outlined. While many twin-prime rows are predicted by f(n) with a =
1,3,5, a more general function%n(an + b)seems necessary for predicting all the rows.

For example, b = 3 gave many more rows.

Table 4 sets out the n* values which produce N* = 5, so for twin primes none of the n

values with REDs listed could give twin primes, whether in 26 or4¢ | as one of the in-
tegers produced would have a RED of 5 and hence could not be a prime. This is evi-
dent in Table 5 and explains why D and E produce far fewer twin primes. However,
it is not clear why C produces the most.

Brun’s Theorem states that the sum of the reciprocals of twin primes is convergent
with a finite value known as Brun's constant [5]. It has historical importance in the
introduction of sieve methods. Its importance here is that this result shows that the
sum of the reciprocals of the twin primes converges; in other words the p involved are
a small set. In explicit terms the sum

Z 1,1 ,,-(l+l)+ 1,1 .('L+L)+..
p p+2) \375 577)7\nn T3

piptEl

either has finitely many terms or has infinitely many terms but is convergent: its value
is known as Brun's constant. Unlike the case for all prime numbers, we cannot con-
clude from this result that there are an infinite number of twin primes. In our case,

B=(+1)+(E+)+(E+L)+..~1.902. (3.1
Since in Z primes are given by (6r +1) ,Equation (3.1) may be expressed by

B=0533+125 —=

r=1 36r2 -1

in which r is the specific row which contains the twin primes, so that

~1.9022

N

Y % 0.11407 » =,
< 36r° -1 24

This additional information might be of use in developing the general equation for the
row; that is, » = L n(an +b).
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4. Final Comments
The triangular and pentagonal numbers are proportional to the rows of squares in
modular rings [3], so that the compatibility of these simple functions with prime-rows
is somewhat surprising. However, the forms are similar to the Euler equation

N=x*+x+p (4.1)

where p =2,3,5,11,17,41 yields primes for 0 < x < p-2.

It has also been shown [3] that Equation (4.1) is compatible with integer struc-
ture and Z;. An extended form of Euler’s equation may be used up to very high inte-
ger values [3].

Another interesting feature of the present analysis is that n values that produce
primes for all f{n) are closely related to the number of primes in a given range. The
sequence of these types of n values could be used to investigate prime distribution.

References

1. Leyendekkers, J.V., A.G. Shannon. 2001. An Analysis of Twin Primes
h2" —1Using Modular Rings Z,and Z,. Notes on Number Theory & Discrete
Mathematics. 7 (1): 21-28.

2. Leyendekkers, J.V., A.G. Shannon. 2001. The Analysis of Twin Primes within
Z. Notes on Number Theory & Discrete Mathematics. 7 (4): 115-124.

Leyendekkers, J.V., A.G. Shannon, J.M. Rybak. 2007. Pattern Recognition:

Modular Rings and Integer Structure. North Sydney: Raffles KvB Monograph

No 9.

4. Leyendekkers, J.V., A.G. Shannon. 2009. Analysis of Primes Using Right-end-
digits and Integer Structure. )

5. Riesel, Hans. 1994. Prime Numbers and Computer Methods for Factorization. 2™

edition. Progress in Mathematics, Volume 126. Boston: Birkhiuser, 1994,

W

15



	nntdm-14-4-10
	nntdm-14-4-11
	nntdm-14-4-12
	nntdm-14-4-13
	nntdm-14-4-14
	nntdm-14-4-15

