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Abstract. In the paper an application of the famous Gelfond-Schneider theorem is

made.

Below the following variant of Gelfond-Schneider theorem (see [1]) shall be used:
Theorem 1. If « (« # 0,1) is an algebraic number and b is an irrational algebraic number,
then a’ is a transcendental number.

Further we shall use the denotation {/x for 2% and as usual e for John Napier’s number:
e = 2.7T1828....

let us observe that /e = 1.44466....

Our first result in the present paper is
Theorem 2. Let a be an algebraic number such that

l<a< e (1)

holds and
a= Vb (2)

does not hold for any rational number b > 1. Then:
1) The equality
a =z (3)

has exactly two different solutions: =, € (1,¢) and 2, € (e, +00);

2) x; (2 = 1,2) are transcendental numbers;

3) The algebraic number a admits the following two different representations, using the
transcendental numbers x; and x,:

a= Yr, and a= R/z;. (4)
Proof. First, we rewrite (3) in the form
Vr = a. (‘
Second, we introduce a function [ : (1,40c) — (1, {/€) putting

flx) = V.
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It is clear that f is a continuous function strictly increasing on interval (1, e) and strictly
decreasing on interval (e, +00). Also, f has an absolute maximum at z = e. Therefore, for
x € (1, ¢) we have:

L= f(1) < flz) < f(e) = Ve

and for 2 € (e, 4+00) we have
Je=f(e)> f(2)> 1= lim f(z).

Hence 1) holds, because of (1) and (5).
Let a2 = b be any solution of (3). Then a = b is a solution of (5), too. Therefore, b
satisfies (2). Hence b is an irrational number.
Let us assume that b be an algebraic number. Then Theorem 1 yields that «® is a
transcendental number. But
a =a

since * = b is a solution of (3). Hence a is a transcendental number. The last contradicts
to the fact that « is an algebraic number. Therefore, our assumption that b is an algebraic
number is wrong. Hence b is a transcendental number and 2) is proved.

Now, 3) (in particular (4)) holds from 1) and 2).

The Theorem is proved.

From every a € (1, y/¢] we introduce a infinite sequence K,(a), K3(a), K3(a), ..., putting

k:(a) = a,

I\’".*.l(a) = (ll\'n(“), fo[‘ n 2 I. (6)

The above sequence is stricly increasing and bounded. The last fact follows from the
inequality

K,(a«) < K, (Ve)

that is valid for n > 1. Indeed, it is a matter of check that

lim K,(e) =e.

n—+20

Hence

K,(a) <e

forn > 1.
Therefore, K, (a) converges to the finite limit K (a) that we denote by

a

K(a) = a"

If we put
K(a) = 2y,

then x, satisfies (3), because of (6).
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Thus as a corollary of Theorem 2 we obtain
Theorem 3 Let a be an algebraic number such that (1) holds and (2) does not hold for
any rational number b > 1. Then, there exists

ry= lim K,(a) = a®"
n—<+400
and xr, € (1,¢€) is a transcendental number.
If we take a = Vb with b € [1, €] (this time without the restriction for b to be irrational
number), then it is easy to see that
lim K,(a)=b.

n—+00

For example, if b = 2 or 4, we have
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On the other hand _

is a transcendental number. Sinse the Diophantive equation
Va = Vb (7)

with @ # b has an integer solutions only in the case a = 2, b = 4 then we conclude that for
each natural number n > 1 and n # 2,4

n '\‘/1_1
Yn V"

is a transcendental number.
Open problem: To be described all rational numbers a, b such that a € (1,¢), b € (e, +o0)
which are solutions of (7).
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