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INEQUALITIES RELATED TO ¢, » AND ¢-FUNCTIONS (III)
Krassimir T. Atanassov
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Here we shall continue the research from [1, 2].

Let us define for the natural number n > 2:

k
— g
n=1] 5"
=1
where k, ai, as, ... ap > 1 are natural numbers and pq,ps,...,pr are different prime

numbers, the following functions (cf., e.g, [3, 4] some of which are used in the present

form in others author’s papers, too):

p(n) = H pi i (pi — 1), and (1) =1,

p(n) = H PN (pi+ 1), and %(1) =1,

a+1

o(n) = H ,and o(1) =1,

cas(n) =k and cas(1) =0,

k
din) = J[ (i +1)andd(l)=

=1

k
dim(n) = > a; and dim(1) =0,

=1
ﬂ(n) = {pl’p27 "'vpk} and S_ﬁt(l) =S 0
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where ( is Riemann function.

THEOREM 1: For every odd natural number n excluding 3, 5, 9, 15, 27, 45, 75.

a.p(n)? > a(n)./n. (1)

Proof: First, we shall start with three partial cases.

Let n = 3%, where @ > 1 is a natural number. Then

3a+1

-1
5 /37 >0

a.p(n)? — o(n).v/n = a.p(3%)? — 0(3%).V3% = 4a.327Y —

for a > 4. Tt is checked directly that (1) is not valid for n = 3,9,27.

Let n = 5%, where a > 1 is a natural number. Then

5a+1
4

a.p(n)? — a(n)/n = a.p(5*)? — o(5%).v/5% = 16a.5271) — - 1.\/5_“ >0

for a > 2. It is checked directly that (1) is not valid for n = 5.

Let n = 3%5°, where a,b > 1 are natural numbers. Then

X = a.p(n)? — o(n)v/n = a.p(3°5%)? — 0(3°5°). V35

(3341 — 1)(5b+1 ~1)
8 .

When a = 1, X > 0 for b > 3. It is checked directly that (1) is not valid for n = 15, 75.

When a = 2, X > 0 for b > 2. It is checked directly that (1) is not valid for n = 45.

When a = 3, X > 0 for every natural number b. Therefore, (1) is valid for every a > 3
and for every b.

= 64q.32(1)52(-1) _ Jahb,

Second, we shall prove Theorem 1 by induction.

Let n > 7 be a prime number. Then
a.p(n)? —o(n)v/n=a(n—-1°>—=(n+1).v/n

=a.(n+1) —dan—(n+1)./n=(n+1).(a(n+1) —v/n) —4an >0.

Let us assume that (1) is valid for each odd n, different than the above mentioned
values, and such that dim(n) = k for some natural number k£ > 1 and there exists a
divisor ¢ of n which is greater than or equal to 7. Let p > 3 be a given prime number.
Therefore, dim(n.p) = k + 1. For p there are two cases.

First case: p is not a divisor of n.

If p> 7, then

a.p(n.p)? — o(n.p)./np = a.p(n).(p—1)* —a(n).(p+1).v/n.\/p
> o(n)v/n((p—1)* = (p+1).v/p)
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=o(n)./n((p+1).(p+1—p) —4p) >0,
because p+1—/p>4forp>T.

If p =3 or 5, then we find a prime number ¢ > 7 that is a divisor of n and construct

the number
n.p

q

that is a natural number and dem(m) = k. Therefore, by assumption

m =

a.p(m)? > a(m)./m.

If (m,q) = 1, then we repeat the above check, but for the number mq instead of m. If
(m, q) > 1 we prove the inequality with mg instead of m by the manner from second case.
Second case: n = m.p®, where m is an odd, a > 1 and (m,p) = 1.
Because 1 e

R i —— U(pa).ﬁl—,

a+1)
p=1 p

o(p

then
a+2 __ 1

p(n.p)’ — o(n.p)./mp = 99(n)2-p2.— G(n)-l;J,l—_l-x/ﬁ-\/ﬁ

a+2_1

> o)V (0"~ =)

> o(n).v/n.(p* — (p+1).\/p) >0,

since p? — (p+1)v/3 > 0 for p > 3.
Therefore Theorem 1 is proved.
THEOREM 2: For every even natural number n > 6

3v2.a.0(n)? > o(n)./n. (2)
Proof: Let m be an odd number. We shall prove that for every natural number a > 1
3V2.0.0(2°.m)? > 0(2%.m).V/2e.m. (3)
From (1) we obtain for a =1
3v2.0.0(2m)? = 3v2.a.0(m)? > a(2m).v/2m.
Let us assume that (3) is valid for some natural number a > 1. Then

3V2.0.0(2°".m)? — 0(2°T1.m).V20+1m

2012 — 1
= 120.v/2¢(2°.m)? — o(2°.m).\/22. V2

m.———za+1 7
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2a+2 -1
— a(2“.m).v 2“m(12\/§ = W\/é)

> 100(2° .m). V26 ,m > 0.

Therefore, (3) and, respectively (2) is valid.
COROLLARY 1: For every odd natural number n excluding 3, 5, 9, 15, 45.

a.p(n)? > p(n)./n.
COROLLARY 2: For every even natural number n > 6
3v2.a.¢0(n)? > 1 (n)./n.
THEOREM 3 For every n > 5 and n # 6,8,12,16, 18, 24:
#(n) > o*(n). (4)
Proof: Let n > 5 be a prime number. Then
*(n)—o*(n)=n—-1>2-n+1)?=n>-4n’+n—-2>0 (5)

for n > 4.
Let us assume that (4) is valid for some natural number n > 5 and let p > 5 be a

prime number and p ¢ set(n). Then

¢°(np) — o*(np) = ¢*(n)(p = 1)° = o*(n)(p + 1)* > 0,

because (4) is valid by assumption and (5) is proved.
Let p € set(n). Therefore, n = m.p® for some natural numbers a and m for which

(m,p) = 1. Then

¢*(np) — o*(np) = > (mp**') — o*(mp**)

3 3¢ 2 g =1
= (m)p*(p 1) = *m)(—

3 3 2 Pa+2 -1,
= ¢ (n)p’ — o (n)(paT:‘I)

> @’ (n)p® —o*(n)(p+1)* > 0,

)2

as above.

Finally, if n = 2* we obtain
(,03(20.) == 0_2(2(1) — (20.—1)3 _ (2a+1 = 1)2
- 23a—3 . 22a+2 + 2'2a+1 _ 1 — 23(1—3 _ 22a+2 + 2(1-}-2 _ 1 > 0’
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for a > 5. It is checked directly that (4) is not valid for n = 8, 16.

If n = 3% we obtain

3 - ot = 3y - Ly

g2 _ 930+ 41 1
: + 5 1(330, . 32a+2) Z 0,

for a > 2. Therefore, (4) is valid for each n > 3 with the present form.

If n = 2°3% we obtain

= 8.3%2 —

PH—1,,

993(21136) = 0,2(2a3b) - (za—1)3(2.3b—1)3 " (2a+1 _ 1)2( = )

= 220,(20.33(1—2 _ 32b+2) 5y 0

for:
e a=1and b> 3 (but (4) is not valid for n = 6,18),
ea=2,3and b>2 (but (4) is not valid for n = 12,24),
ea>4and b>1.

Therefore, Teorem 3 is proved.
COROLLARY 3: For every n > 5 and n # 6,8,12,16, 18, 24:

p*(n) > 9*(n).

It is clear that for every natural number m there exists a natural number ng such that

for every natural number n > ng

P" T (n) > ¢ (n).

For example, for m = 3 we shall prove
THEOREM 4: For every natural number n > 5 and n # 6,8,9,12,16, 18, 24, 32, 36, 48,
54,72, 108,144,162,192, 216,288, 324, 384,432, 486,576

¢'(n) = ¥*(n).
Proof: Let n > 5 be a prime number. Then
eln) =)= -1 =(n+1>°=n*-5m*+3n* - >0

exactly for n > 5.
Let us assume that the assertion be valid for some natural number n > 5 and let p > 5

be a prime number. For p there are two cases.
Case 1: p & set(n). Then

¢*(n.p) — ¥*(n.p) = p*(n).(p — 1)* = ¥*(n).(p+ 1)* > ¥*(n).(p — 1)* = (p + 1)°) > 0.
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Case 2: p € set(n). Then
©*(n.p) — ¥ (n.p) = p*(n).p* — P3(n).p° > Y3(n).p’.(p—1) > 0.

Now, we shall study three special cases.

Let n = 2% Then
994(2a) _ ¢3(2a) — 24(a—1) _ 33.23(11—1) = 23((1—1).(20,—1 - 33) >0

for @ > 6. It is checked directly that the assertion is not valid for n = 8,16, 32.
Let n = 3%. Then

994(30,) . ,¢,3(3a) = 24_34(a—l) . 43.33(0,—1) 9 24.33(a—1).(3a—1 _ 4) 5 0

fora > 3. It 1s checked directly that the assertion is not valid for n = 9.
Let n = 22.3%. Then

X = 994(2(1'3!)) - Qp3(2cz'3b) =— 24‘24(a—1).34(b—1) . 123.23((1—1).33“)-—1)

= gt 9fle-1) gB(=1) rgo=1 246=1) . 108},

When a =1, X > 0 for b > 6 it is checked directly that the assertion is not valid for
n = 6,18,54,162,486.

When a =2, X > 0 for b > 5 it is checked directly that the assertion is not valid for
n = 12,36,108, 324.

When a = 3, X > 0 for b > 5 it is checked directly that the assertion is not valid for
n = 24,72, 216.

We must note that for b = 4, i.e., for n = 23.3* we obtain:
¢*(22.3) = ¥¥(2°.3%).

When a =4, X > 0 for b > 4 it is checked directly that the assertion is not valid for
n = 48,144,432.

When a = 5, X > 0 for b > 3 it is checked directly that the assertion is not valid for
n = 96, 288.

When a = 6, X > 0 for b > 3 it is checked directly that the assertion is not valid for
n = 192, 576.

When a =7, X > 0 for b > 2 it is checked directly that the assertion is not valid for
n = 384.

When a = 8, X > 0 for every b > 1.

The Theorem is proved.
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Let for a fixed prime number p here and below ¢ and r are its successor and its

predicessor prime numbers, respectively. Then we can define

P+(P) =4q,
p-(p) =r,
p-(1) =0,
p+(1) =2,
a2} = 1.

Obviously, for every prime number p:

p-(p+(p)) = p = p+(p-(p))

and these equalities can be extended for every natural number n:

k
p+(n) = H p¥ (i)

and
p-(p+(n)) = n = pi(p-(n)).

Moreover, both functions are multiplicative.

If p is a prime number and n is a natural number, if p € set(n), then p_(p
set(p-(n)), p+(p) € set(pi(n)), and if p & set(n), then p_(p) ¢ set(p-(n)),p+(p

set(py(n)).
THEOREM 5: For every natural number n > 2:

(a) ¢(p1(n)) 2 n,

(b) o(p-(n)) < n,

(c) ¥(p-(n)) < n.

Proof: (a) Let n = p be a prime number. Then

elp+(n)) =¢(g)=¢—1>(n+1)-2=n.
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Let us assume that the inequality is valid for for some natural number n and let p be a
prime number. For p there are two cases.
Let p & set(n). Therefore, ¢ & set(py(n)) and
?(p+(np)) = ¢(p+(n).q) = ¢(p+(n)).0(q) > n.(g — 1) > np.

Let p € b_et(n) Therefore, ¢ € set(py(n)) and n = m.p®. Then

2(p+(np)) = ¢(p+(m).¢""") = @(p4(m)).¢".(¢ — 1) = p(p4(n)).q¢ > n.(p + 2) > n.p,

ie. (a) is valid.
(b) and (c) are proved analogously.
THEOREM 6: For every natural number n > 2, if

k
=[] »
i=1

o = max o
T

and if mindiv(n) = p; < p; < ... < pr = mazdiv(n), then
2 :
= Heas(n) < <
maxdiv(n)) n<prn) < (
p—(mandiv(n))

mazdiv(n)

p+(mazdiv(n))

)*.n (6)

mindiv(n)

N p4(mazdiv(n)) ., ‘
n<p_ < N.

)%n < p_(n) < ( indiole) )*.n (7)

Proof: Let the natural number n > 2 be given and let for it p; < py < ... < pr. Then

f[P+(
=11

k ‘
Pit1 oy Pit1 o p+ Pk)va _  Pt(mazdiv(n))
H H )= .

mendiv(n)
pe(n) | 17 Pe(p) o T :
T s [T 5 eile— P
n —,-1} Pi _E I;I1+ (+mawdzv( ))
()
— (1 o cas(n)
( maxdiv(n)

p—(n) H )a, < H(pz+1 o < (H Pz+1 P+ maa:dw(n))‘)a'

mandiv(n)

I

_<pz->_)a,. > ([ 2= » (ﬁpifl o (p=l2) o

=1 D i=1 P =1 Pi Pk
p—(mindiv(n))

= ( T B

mazdiv(n)

Therefore (7) is valid.
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