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1 Introduction

An arithmetic function is a mapping from the positive integers into the field of Complex
numbers. We shall denote the set of arithmetic functions by .A. Various binary product
operations dependent on the divisibility properties of the natural number n may be defined

on the set A. Two such well-known products are, the Dirichlet convolution

fxg)(n) =3 fd)g( (1)
din :
and the unitary convolution
(feg)= X fdg3) (2)
dln
d2)=1

where f,g € A. The latter may also be denoted by, Z f(d
d||n

d) The unitary convolution
and related functions have been studied by, amongst others, Cohen [6], [7], Dickson [8],
Dirichlet [9], Fekete [10], and Vaidyanathaswamy [17]. Ordinary addition and multiplication
on the set A are defined respectively by: (f + g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n).

It is easily verified that (A, +) is an abelian group with 0, the zero function as the identity.

The additive inverse of f is denoted by —f. Dirichlet convolution is both commutative and

Iin=1
eo(n) =
Oon>1

is the Dirichlet convolution identity. Further, we note that, if f(1) # 0, then f has the

associative. The function

unique (Dirichlet) inverse denoted by f~! and observe that the set < A, %, + >,with Dirichlet
convolution and ordinary addition of functions forms a commutative ring R with identity ¢,
Cashwell and Everett [5]. Similarly, it is known, Sivaramakrishnan [16], that < A, ®,+ > is

a commutative ring with identity and that < A,+ > is an Abelian group.
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An arithmetical function is said to be multiplicative if,
f(1) =1 and f(mn) = f(m)f(n) whenever (m,n) =1,
and is called completely multiplicative if,
f(mn) = f(m)f(n) for all m and n.

t t
It follows therefore, that if f is multiplicative, then f (H pf“) = H (f(p)), and if f is
i=1

i=1

¢ ¢ t

completely multiplicative, then f (H pf‘") =[] (f(:))™, where n = [[p{* > 1 and the
: i=1 i=1 i=1

usual notation is used. Consequently, multiplicative functions are determined by the values

f(p°®) and completely multiplicative functions are determined by the values f(p). We shall

denote the set of multiplicative functions by M and the set of completely multiplicative

functions by CM.

2 Prime Equivalence Classes

It therefore would be natural to investigate the properties induced on A by the relations

defined by the characterizations above. Thus, on the set A, define the relation ~ as follows;

f~g < f(p) =9g(p),V prime p.

It follws that ~ is an equivalence relation. Let U be the subset of A such that, for all
felU, f(l) =1, so that M CUY. Further, let A/ ~ denote the quotient set induced by the
equivalence relation ~ and U/ ~ the subset of A/ ~ such that, for all [f] e U/ ~, f(1) =1,
where [f] represents the equivalence class of f.

We now define the following operations on A/ ~ as follows:

L [fl+[g] = [f + 4],



2. [f]e[g] = [fg],

8. =lfl=[-4
4. [0] =0, and
5. [} =1.

It is easily verified that these operations on A/ ~ are well-defined. We also note that
< A/ ~,e,+ > with multiplication and addition as defined above forms a commutative
ring.

t
Definition: Let n = [[ p{ > 1. For each [f] € U/ ~, define,

i=1

Sy :NxU/~—C

Sipy(n) = ;aif(pi) and Sip(1) = f(1) =1,

where f € [f], N is the set of natural numbers and C the set of complex numbers.

Next, we define the mappings ® and ¥ as follows:
D<A x,+>—>< A/ ~,0,+ >

where
o(f) = [f],

and

U:<U,x>—<U/ ~+ >,

to be the restriction of ® to U.

The following remark is easily proved and we skip the proof.
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Proposition 1 The function Sy is uniquely defined, that is, Si5j(n) = Sig(n), for n > 1

and S[f](l) = Sg(1) <= [f] = lg]-
Lemma 2 The mapping V¥ is a group homormophism.

Proof

It is easily shown that < U, * > is a subgroup of the group of units in < A, x >. Further,

Vf,g €U, (f xg)(p) = f(p) + g(p). So that,

t

Sipsg(n) =Y ai (f xg) (1) = ; i f (p) + ; aig(pi)

i=1

t

= ;a (f +9) () = Sipp(n) + Sig(n) = Siz1q(n)
mwqu=§mU~ﬁym=§mme§¥mm
= gaif (pe) - gaig(pi)
= Sip(n) = Sig(n) = Si—q(n), that is , [f+g7'] =[f —g]
with Siz4g)(1) = Sireg)(1) = (£ x 9)(1) = 1.
Therefore, since [h] + [k] = [h + k] = [h x k] and —[h] = [-h] = [h7}], it follows that
< U/ ~,+ > is a subgroup of < A/ ~,+ > and

U(fxg)=[f*gl=[f+g] =[f]+1g] = T(f) + L(g).
Remark: Let f;,g; € U, where 1 < i <r and ,1 < j <s. Then,
(e foxeees S =it fork o £ = IA)
and

[fixfox-xfrrgiixgtx-xgll=[fi+tfot-+fri—-9i'—g"' = —g;"]
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= Z[fi] o Z[gi]~
i=1 i=1
This follows by induction from above.
Lemma 3 Let m,n > 1. Then
1. S[f](mn) = S[f](m) + S[f](n), and

2. Si5)(n") = rSip(n), where r is a positive integer.

The proofs follow directly from the definition.

Proposition 4 Let f,g € M. If n is square-free, then

[fl=lg <= f=9

And as an application, since;

t

Sip-y(n) = — ;aif(pi) =Y ai(nf) (i) = Spp(n),

=1

that is, [f~!] = [uf], it follows that, f~* = uf, whenever n is square-free.

Examples

Example 1

Let N(n) = n and u(n) = 1,V natural numbers n. Then,
t t t
S(n) = aip(p:) =D aipi — Y o
i=1 i=1 i=1
= Sw(n) — Sy (n) = Sivw(n),

= [@] = [N * p,

where ¢ is Euler’s totient function, and p is the Mébius function, with «™

6
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Alternatively,

t
S[¢] Z @id(p;) = Z Q;P; — Z Q;
i=1

- ;ai(l’z‘ +1-2)= ;ai(m o Ly ;aﬂ(m)

= Slour-1)(n), 50 that, [#] = [0 x 77'] = [ux N].

Example 2
It is known that 3 = N x N x u, where (n Z (k,n) and (k,n) is the ged of k and n.
k=1
Therefore,
t T t
SiN«Nw) (1) = Z i + Y 0ip; — Z (%
i=1 i=1 i=1
t t
= aipi+Y_ai(pi -
i=1 i=1
¢ t
= Z a;N(p;) + Z ;0(pi)
i=1 i=1
= S[N*q&](n)athat iS, [,3] = [N * ¢]
Alternatively,
t
Sivani(n) = Z 20ip; = Y ;TN (p;)
i=1
= Sirn)(n), that is, [N * N] = [TN] = [B * u].
Example 3

Now let, f,g,h € U and consider,

Sif(gsh(n) = Zaz(fg)(pz) +Zaz(fh (ps)

= Sitg(n) + Sigr(n) = Siggepn(n), that is, [f(g * h)] = [fg * fh].

Example 4



Next, we let f € CM and consider,
Sin(n) = Sipepas1) Z2azf pi) + Zaz ()

- izlai(Tf)(pi) + ;ai(uf)(pi)
= Sprfuus)(n), that is, [f] = [7f * pf] = [f(T * p)]-

It is therefore clear, that some of these equivalence classes can give rise to arithmetical

identities and or characterizations, but first, we have the following result.

Proposition 5 Let f,g € CM. Then f =g < [f] =[g]-
Proof

The ‘if’ condition follows directly from the lemma. Conversely, suppose [f] = [g],= f(p) =
g(p)V prime p.

= f (f[zﬁ‘") Hf(p = Hf (pi)*

i=1
t
- s o ({2 e 12
i=1

that is, f(n) = g(n)¥n. And, hence, the next result.

Corollary 1 Let f,g,h €U and gxh =u = [f] = [fg* fh]|. Then, f = fg*x fh <= f €

CM.

Particular cases of the above result would follow from the solution of gxh = u. Alternatively,
the group homormophism ¥ allows for the solution of the much simpler equation; [g + h] =
[u] or g(p) + A(p) = L.

Thus,



. 7(p)+u(p) = 1 giving rise to 7xp = u and hence the result, f € CM <= f = f(7*p).
We note that this result is equivalent to the result f € CM <= fx f = f7, see

Carlitz [3].

. N(p) — ¢(p) = 1 giving rise to N x ¢~ = u - N = u * ¢ and hence the result
feECM < f=fNxfolor fN=fx (fd)’l) = f * f¢, where we use the fact
that, ( fg)_1 = fg7! <= f € CM as proved below. This is a known result, see

Sivaramakrishnan[15].

. o(p) — N(p) = 1 giving rise to o * N~' = u and hence the result f € CM <= [ =

fox fN~tor fo=fxfN.

. Ni(p) — Ji(p) = 1 giving rise to Nj * J; ' = u and hence the result f € CM < f =
N * fJ7' or fNy = f * fJi, where Ji, is Jordan’s totient function and Ni(n) = nk.

We note that this result generalizes result 2 above.

Corollary 2 Let f,g,h €U and gxh = ¢y = [eo] = [fg* fh]. Then ¢ = fgx fh <= f €

CM. Alternatively, (fg)™" = fg~' <= f € CM, see Apostol [1].

One well known result, f € CM <= f~' = pf derives from the fact that, u * p = €.

Clearly, many more such results could be found from the solution of g * g=! = ¢.

The above corollaries generalize to give the following well known result, see Apostol [1].

Theorem 6 Let f € M. Then, f € CM <= f(gxh)= fg=* fhVg,h € A.

Proof

It is clear that if f € CM then, f(g* h) = fg * fh. And the converse follows by choosing g

and h such that g x h = u or g x h = ¢y and using any of the above corrolaries.
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If in theorem 6, we choose h = u we obtain the result, f € CM <= f = fg = fG where

f,G € M and g = G * u, see Shonhiwa [14].

Next, we define:

Fig(n |Z Sis(d), that is Fig) = u x Sy.
d|n

Then,

t t
S[F[f]](n) = Spy(n) + ng (n) = Z oiu(p;) + Z @S|5)(ps)
=1 i=1
t
=0 (u+ i) (pi), that is, [Fig] = [u+ Sig].

i=1

Equivalently, [Fig] = [u + %S[ 1] which raises the question of whether or not
T
Fip(n) =3 Sin(d) = (u i §5m) (n)?
dln
On letting n = p°®, we find that,

Fip(®) =Y. Syn(d) =1+ f(p) (1+2+3+---+e)

d|pe

4 fplele+1)

o — (ut S ():

And for n = mk, (m, k) = 1 we find that,

Y Spd =1+ > Spd)=1+ >, Sif1(drda)

dmk d|mk dida|mk,dydy > 1
d>1 (dr,dp) =1
=1+ > Spld)+ Y. Spld)
dy|m, do|k dak, di|m
dy # 1 dy #1
=1+ %T(m)sm (m) + M Sin(k),
7(m)7(k) L T(m k)

= 1+ ———= (Si1(m) + Sy (k)) = Sip(mk),
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where we have used lemma 3, induction on n and the multiplicativity of the function 7. And,

hence, the following result.

T\ n
Theorem 7 Fiy(n) = ¥ Sin(d) = 1+ T iy (m).
dln

In the literature, results close to the above were obtained by, Chawla [2] and LeVan [13].

3 Applications

We now turn our attention to the elegant results obtained in a paper by Carlitz and Subbarao,
[4].
Let f € U and define forn =1,2,---

(-1

F1)=1,fm =3, & S f ) ) > 1
=1 didy---d. =n
di£1,i=1,2--r
Fy=1,fm=32% 5 Fd)f(da)- - fld)yn > 1,

=1""" didy---d.=n

di A1 d=19n1r

where each of the inner summations is over all the sets (dy,ds, - - - d,) satisfying the given

conditions. Further, we let 3 and v denote respectively the transformations on ¢ defined by,

B(f)=Fand y(f)=f,f elU.

The authors show that 3 is a bijection on U/ and that its inverse is the mapping . They
then proceed to use some of their results to solve the functional equation; f (k) — g, f,gel
for given g, where f®) = fx fx--- % f(k times ).

First; since ¥ is a group homormophism and f(p) = f(p),V prime p, it follows that,

U(fxg)=[Fxgl=1fxg
11



=[f+al=[f1+1g] = [f] +[g]
=[f+31="2(f)+¥(9),
so that,
[fxg]=[f+3]
Similarly,

U(fxg)=[f*3=[f+3]
=[]+ = [f1+d]
=[f+g =+,

where we used f(p) = f(p),V prime p, and hence,
[+ =[f+g).

Further, it is known that if f,g € U and f € CM, then fg = fg, [4]. We now prove the

following theorem.

Theorem 8 Let f,g € U. Then, f €CM <= fg= fg.
Proof

We skip the ‘if’ part which is straightfoward using the definition. We now assume that,
fg = fg,Yg € U and show f € CM.

Choose g = u which is completely multiplicative. Then,

fu=fu= fu=f= f(°) = f(°)u(r°).

%;nzpe,ezl,Z,---
ﬂ(n)—{ },[4].

0; otherwise

But, for n > 1,

12



Therefore,

e-1 (__1\j e—1
£5) = ) = {Z = ( ) £0) - ) + f(pe)}
J=0 7

=e {fe(p) - fo)+ f(pe)}

€

= f(r°) = f(p),
and, hence, the result. We note that the formula for f(p®) was derived inductively. Haukka-
nen [12], also proved this result, albeit using a different argument.

Using this result, we reprove (more efficiently) the following result.

Theorem 9 Let f € CM. Then f(1) =1 and forn > 1,

i} Lfp)sn=pe=1,2,
f(n): 7[4].

0; otherwise

Proof

From f = fu = f4, it follows that,
{ %(f(p))e;n:pe7e= 1727}

0; otherwise

Next define the mapping;

IFi<U] ~+ >—<U,*x >,

L([f]) = B(f)-

We first obtain the following result.
Theorem 10 The composition
Vof:<U,x>—<U/~+>

18 a group homomorphism.
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Proof

(TopB)(fxg)=V(B(f*9))
=[B(f*9)]=I[Ff+3=[f]+1d]
=T (B(f)) + ¥ (B(9)) = (¥o B)(f) +(¥op)(9)

Now, in order to solve the functional equation f (k) — g we shall require the following theorem,

by Glockner, Lucht and Porubsky [11].

Theorem 11 Let g € U and k a natural number. The equation f(k) = g has k distinct
solutions given by, f = w;h,i=1,2,---,k, where w; are the k-th roots of unity and h is one

solution to f* = g.

Applying the homomorphism, we note that solving f*®) = g is equivalent to solving [k f] = [g].

But, I ([k f]) = kf, from which it follows that,

kf =T ((kf1) =T ((8) = Blg)

= L. 1_
=>f—E9=>f—Eg,

and, hence,

omis. 1_
f—el‘p(_k—_)ic—g’s_o,l,‘“,k_1'

A similar argument can be used for solving the equation, f* = fg where ¢ € CM and

g(n) # k for any positive integer n.

4. Prime Power Equivalence Classes: We now turn briefly to the second part of our
investigation. Proceeding as before, we define the relation ~ as follows:

f~g < f(p°) =g(p°),V prime p and e > 0. It follows that ~ is an equivalence relation.

14



t
Definition: Let n = [[pf* > 1. For each [f] € U/ ~, define,

=1

S[f]:NXU/N—->C

t

Sip(n) = > f(pf*) and Sip(1) = f(1) = 1,

i=1

where f € [f], N is the set of natural numbers and C the set of complex numbers.

We shall redefine the mappings ® and ¥ as follows:
D < AR, +>—>< A/ ~,0,+ >

where
®(f) = [f],
and

U:<lU,@ >—< U/ ~,+ >,

to be the restriction of ® to U. We note that ¥ is a group homomorhism on account of the

fact that
(f®9)(p d”ZEf = f(p°) + 9(p°).
So that, p
Sialn) = 304 8 9)08")
= Z_Z:f ) + ;g(pz = Sir1q(n)-
Also,

t t
Sireg-y(n) =3 fF@F) + Y 97 (0F)
=1 =1
= Sip(n) + Sig-1)(n) = Sis—g(n).

The next result is important and easy to prove. We skip the proof.
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Theorem 12 Let f,g € M. Then, Sip(n) = Sjg(n) <= f=y.

Examples

i t
Siveu(n) = 3 N®F) + Y u(pf®)
=1 =1

t
=> (1 +pf*) = Sp1(n),
i=1

where o*(n) = Y _ d. It can be shown that ¢* is multiplicative, so that, N @ u = o™
d||n

t

t t
Sivem(n) = Y N(@F) + > N(@) =Y 2
=1 =1

i=1
t

=Y T*N(p{*) = Spren(n),
=1

where 7*(p%) = Z 1 = 2. That is, N ® N = 7°N and if n is square-free, then
d||p°
N®®N=NxN=r1N.

Next we shall define the unitary analogue of the Mébius function by, p*(n) = (—1)*™ where
w(n) denotes the number of distinct primes of n and w(1) = 0. We may evaluate > p(d)

d||n

as follows:

t

= 1+ (-1) =>_colpf") = St (),

=1 i=1 i=1

that is, u ® pu* = €. Now, it is known that if { ® n = €, then

f=¢(®g < g=n® f, Cohen [7].
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Combining this result with the previous one, it follows that,

f=u®g < g=p"Qf.

Whilst some of the above results are standard, the homomorphism provides an alternative
approach to the study of unitary convolution. Further, the discussion immediately above
raises other questions, for instance, do we still have the analogues of the functions 8 and
aon < U,® >?7 These and other questions raised by the foregoing investigations will be

addressed in subsequent researches.
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