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Abstract

In the present short note we propose and prove some new identities involving
Bernoulli numbers and binomial coefficients. One of this identities is the main re-
sult of the paper.

First we remind that Bernoulli numbers (see [1]) are denoted by B,..m = 0. 1... and are
introduced by:
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For example we have
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etc. It is well-known that:
[32t+1 = 0,[ 2 l

Let us introduce a bivariable polynomial fe(x,y) by:
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where & > 1 is an integer. Obviously deg fr(x,y) = k + 1, where deg means the degree of
the polynomial. In [2] the following important results are proved

Lemma. The polynomial fy(x,y) from (1) is a symmetric function with respect to x and vy,
1.e the equality:

fele,y) = fuly, ) (2)
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holds. Also fi(x,y) admits the representation:
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Corollary 1. For a = 1,2.... k the identity:
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Proof. I'rom (1) the coefficient corresponding to x Yy~ is equal to
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and the coefficient corresponding to z®y**+1=* is equal to
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Hence (3) is true, since (2) holds.
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we obtain from (3) the identity:
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Using that:

which is valid for all « = 1,2, ..., k.
Now we are ready to formulate and prove the Main Result of the Paper.
Theorem.For every two positive integers o and /3 the identity:
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holds.
Proof. Putting in (4) £ = a + 4 — 1 we obtain the identity:
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From (6) follows immediately the identity (5) and also the identity:
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and the Theorem is proved.

Finally we need the following
Remark.If we agree that (2) = 0,for m > 0, and (°) = 0 then, (5),(6) and (7) remain
valid for each of the cases o = 0, 3 # 0 and a # 0,8 = 0, because of the relation which
defines Bernoulli numbers for m > 1. Moreover, (5),(6) and (7) will remain valid and for
the case o = 0,3 = 0. But then these identities are trivial.

The above remark means that each one of (5),(6) and (7) is a strong generalization of
the defining property for Bernoulli numbers
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and for some other known identities involving both Bernoulli numbers and binomial coeffi-
cients.
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