ON TWO SMARANDACHE'S PROBLEMS

Krassimir T. Atanassov¹ and Mladen V. Vassilev-Missana²

CLBME - Bulg. Academy of Sci., P.O.Box 12, Sofia-1113, Bulgaria
 e-mail: krat@bas.bg
 V. Hugo Str. 5, Sofia-1124, Bulgaria

The 20-th problem from [1] is the following (see also Problem 25 from [3]): Smarandache divisor products:

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19,

8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768,

 $1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, \dots$

 $(P_d(n) \text{ is the product of all positive divisors of } n.)$

The 21-st problem from [1] is the following (see also Problem 26 from [3]: Smarandache proper divisor products:

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1,

13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39,

64000, 1, ...

 $(p_d(n) \text{ is the product of all positive divisors of } n \text{ but } n.)$

Let us denote by $\tau(n)$ the number of all divisors of n. It is well-known (see, e.g., [2]) that

$$P_d(n) = \sqrt{n^{\tau(n)}} \tag{1}$$

and of course, we have

$$p_d(n) = \frac{P_d(n)}{n}. (2)$$

But (1) is not a good formula for $P_d(n)$, because it depends on function τ and to express $\tau(n)$ we need the prime number factorization of n.

Below, following [4], we give other representations of $P_d(n)$ and $p_d(n)$, which do not use the prime number factorization of n.

Proposition 1.[4] For $n \ge 1$ representation

$$P_d(n) = \prod_{k=1}^n k^{\left[\frac{n}{k}\right] - \left[\frac{n-1}{k}\right]}$$
 (3)

holds.

Here and further the symbols

$$\prod_{k/n} \bullet \text{ and } \sum_{k/n} \bullet$$

mean the product and the sum, respectively, of all divisors of n and

$$\theta(n,k) \equiv \left[\frac{n}{k}\right] - \left[\frac{n-1}{k}\right] = \begin{cases} 1, & \text{if } k \text{ is a divisor of } n \\ \\ 0, & \text{otherwise} \end{cases}$$
 (4)

The following assertion is obtained as a corollary of (2) and (3).

Proposition 2.[4] For $n \ge 1$ representation

$$p_d(n) = \prod_{k=1}^{n-1} k^{\left[\frac{n}{k}\right] - \left[\frac{n-1}{k}\right]}$$
 (5)

holds.

For n = 1 we have

$$p_d(1) = 1.$$

Proposition 3.[4] For $n \geq 1$ representation

$$P_d(n) = \prod_{k=1}^n \frac{\left[\frac{n}{k}\right]!}{\left[\frac{n-1}{k}\right]!}$$
 (6)

holds, where here and further we assume that 0! = 1.

Now (2) and (6) yield.

Proposition 4.[4] For $n \geq 2$ representation

$$p_d(n) = \prod_{k=2}^n \frac{\left[\frac{n}{k}\right]!}{\left[\frac{n-1}{k}\right]!}$$
 (7)

holds.

Another type of representation of $p_d(n)$ is the following

Proposition 5.[4] For $n \geq 3$ representation

$$p_d(n) = \prod_{k=1}^{n-2} (k!)^{\theta(n,k) - \theta(n,k+1)},$$
(8)

where $\theta(n,k)$ is given by (4).

Further, we need the following

Theorem.[4] For $n \geq 2$ the identity

$$\prod_{k=2}^{n} \left[\frac{n}{k}\right]! = \prod_{k=1}^{n-1} (k!)^{\left[\frac{n}{k}\right] - \left[\frac{n}{k+1}\right]} \tag{9}$$

holds.

From (7), the left hand-side of (11) is equal to $p_d(n+1)$. From (8), the right side of (11) is equal to $p_d(n+1)$, too. Thetrefore, (11) is true.

Now, we shall deduce some formulae for

$$\prod_{k=1}^{n} P_d(k) \text{ and } \prod_{k=1}^{n} p_d(k).$$

Proposition 6. Let f be an arbitrary arithmetical function. Then the identity

$$\prod_{k=1}^{n} (P_d(k))^{f(k)} = \prod_{k=1}^{n} k^{\rho(n,k)}$$
(12)

holds, where

$$\rho(n,k) = \sum_{s=1}^{\left[\frac{n}{k}\right]} f(ks).$$

Proof. We use a well-known Dirichlet's identity

$$\sum_{k \le n} f(k) \cdot \sum_{t/k} g(t) = \sum_{k \le n} g(k) \cdot \sum_{s \le \frac{n}{k}} f(ks),$$

where g is also arbitrary arithmetical function. Putting there $g(x) = \ln x$ for every real positive number x, we obtain (12), since

$$P_d(k) = \prod_{t/k} t.$$

When $f(x) \equiv 1$, as a corollary from (12) we obtain

Proposition 7. For $n \geq 1$ the identity

$$\prod_{k=1}^{n} P_d(k) = \prod_{k=1}^{n} k^{\left[\frac{n}{k}\right]}$$
(13)

holds.

Now, we need the following

Lemma. For $n \geq 1$ the identity

$$\prod_{k=1}^{n} \left[\frac{n}{k}\right]! = \prod_{k=1}^{n} k^{\left[\frac{n}{k}\right]} \tag{14}$$

holds.

Proof. In the identity

$$\sum_{k \le n} f(k) \cdot \sum_{s \le \frac{n}{k}} g(s) = \sum_{k \le n} g(k) \cdot \sum_{s \le \frac{n}{k}} f(s),$$

that is valid for arbitrary two arithmetical functions f and g, we put:

$$g(x) \equiv 1$$
,

$$f(x) = \ln x$$

for any positive real number x and (14) is proved.

From (13) and (14) we obtain

Proposition 8. For $n \ge 1$ the identity

$$\prod_{k=1}^{n} P_d(k) = \prod_{k=1}^{n} \left[\frac{n}{k}\right]! \tag{15}$$

holds.

As a corollary from (2) and (15), we also obtain

Proposition 9. For $n \geq 2$ the identity

$$\prod_{k=1}^{n} p_d(k) = \prod_{k=2}^{n} \left[\frac{n}{k}\right]! \tag{16}$$

holds.

Fom (9) and (16), we obtain

Proposition 10. For $n \geq 2$ the identity

$$\prod_{k=1}^{n} p_d(k) = \prod_{k=1}^{n-1} (k!)^{\left[\frac{n}{k}\right] - \left[\frac{n}{k+1}\right]}$$
(17)

holds.

As a corollary from (17) we obtain, because of (2)

Proposition 11. For $n \geq 1$ the identity

$$\prod_{k=1}^{n} P_d(k) = \prod_{k=1}^{n} (k!)^{\left[\frac{n}{k}\right] - \left[\frac{n}{k+1}\right]}$$
(18)

holds.

Now, we return to (12) and suppose that

$$f(k) > 0 \ (k = 1, 2, ...).$$

Then after some simple computations we obtain

Proposition 12. For $n \geq 1$ representation

$$P_d(n) = \prod_{k=1}^n k^{\sigma(n,k)} \tag{19}$$

holds, where

$$\frac{\sum\limits_{s=1}^{\left[\frac{n}{k}\right]}f(ks) - \sum\limits_{s=1}^{\left[\frac{n-1}{k}\right]}f(ks)}{\sigma(n,k) = \frac{f(n)}{f(n)}}.$$

For $n \geq 2$ representation

$$p_d(n) = \prod_{k=1}^{n-1} k^{\sigma(n,k)}$$
 (20)

holds.

Note that although f is an arbitrary arithmetical function, the situation with (19) and (20) is like the case $f(x) \equiv 1$, because

$$\frac{\sum\limits_{s=1}^{\left[\frac{n}{k}\right]} f(ks) - \sum\limits_{s=1}^{\left[\frac{n-1}{k}\right]} f(ks)}{f(n)} = \begin{cases} 1, & \text{if } k \text{ is a divisor of } n \\ 0, & \text{otherwise} \end{cases}$$

Finally, we use (12) to obtain some new inequalities, involving $P_d(k)$ and $p_d(k)$ for k = 1, 2, ..., n. Putting

$$F(n) = \sum_{k=1}^{n} f(k)$$

we rewrite (12) as

$$\prod_{k=1}^{n} (P_d(k))^{\frac{f(k)}{F(n)}} = \prod_{k=1}^{n} k^{\delta_1},$$
(21)

where

$$\delta_1 = \frac{\sum\limits_{s=1}^{\left[\frac{n}{k}\right]} f(ks)}{F(n)}.$$

Then we use the well-known Jensen's inequality

$$\sum_{k=1}^{n} \alpha_k x_k \ge \prod_{k=1}^{n} x_k^{\alpha_k},$$

that is valid for arbitrary positive numbers x_k , α_k (k = 1, 2, ..., n) such that

$$\sum_{k=1}^{n} \alpha_k = 1,$$

for the case:

$$x_k = P_d(k),$$

$$\alpha_k = \frac{f(k)}{F(n)}.$$

Thus we obtain from (21) inequality

$$\sum_{k=1}^{n} f(k).P_d(k) \ge \left(\sum_{k=1}^{n} f(k)\right). \prod_{k=1}^{n} k^{\delta_2}, \tag{22}$$

where

$$\delta_2 = \frac{\sum\limits_{s=1}^{\left[\frac{n}{k}\right]} f(ks)}{\sum\limits_{s=1}^{n} f(s)}$$

If $f(x) \equiv 1$ then (22) yields the inequality

$$\frac{\sum\limits_{k=1}^{n}P_{d}(k)}{n} \geq \prod\limits_{k=1}^{n}(\sqrt[n]{k})^{\left[\frac{n}{k}\right]}.$$
(23)

If we put in (22)

$$f(k) = \frac{g(k)}{k}$$

for k = 1, 2, ..., n, then we obtain

$$\sum_{k=1}^{n} g(k).p_d(k) \ge \left(\sum_{k=1}^{n} \frac{g(k)}{k}\right). \prod_{k=1}^{n} (\sqrt[k]{k})^{\delta_3}, \tag{24}$$

where

$$\delta_3 = \frac{\sum\limits_{s=1}^{\left[\frac{n}{k}\right]} \ \underline{g(ks)}_{s}}{\sum\limits_{s=1}^{n} \ \underline{g(s)}_{s}},$$

because of (2).

Let $g(x) \equiv 1$. Then (24) yields the very interesting inequality

$$(\frac{\sum_{k=1}^{n} p_d(k)}{H_n})^{H_n} \ge \prod_{k=1}^{n} (\sqrt[k]{k})^{H_{[\frac{n}{k}]}},$$

where H_m denotes the m-th partial sum of the harmonic series, i.e.,

$$H_m = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{m}.$$

All of the above inequalities become equalities if and only if n = 1.

References

- [1] Dumitrescu C., V. Seleacu, Some Sotions and Questions in Number Theory, Erhus Univ. Press, Glendale, 1994.
- [2] Nagell T., Introduction to Number Theory. John Wiley & Sons, Inc., New York, 1950.
- [3] Smarandache F., Only Problems, Not Solutions!. Xiquan Publ. House, Chicago, 1993.
- [4] Vassilev-Missana, M. Some representations concerning the product of divisors of n. Notes on Number Theory and Discrete Mathematics, Vol. 10, 2004, No. 2, 54-56.