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Abstract
The squares of primes in the Modular Ring Z, fall in even rows, R, in Class /4 with
R, =6K; and K, = %n(?m + 1) (depending on the parity of j). The n values are found

to equal the rows that the primes occupy when Z is set as a tabular array. The primes in

Z , equal a unique sum or difference of squares (x2 + yz) and via n, the (x,y) pairs can
be identified within the Z, structure. The » values for composites follow well-defined

linear functions that permit easy sorting. Finally, the parameter n in the well-known
function P = h2" —1 has been identified as the row in one or more of the Modular Rings

Z,,,Z¢ or Z, that contains one or more primes.

1. Introduction

Historically in the study of primes, the main objectives have been to identify primes
and an associated study has been to find their distribution and number, and the
factorisation of large numbers. Although it is well-known that primes can have forms
such as (4r +1), (4r +3), and (6r —l), (6r+1), and so on, which allow further
categorisation of these integers, the significance of any such relationships can only be
understood in the context of the structure of the integers as a whole. This can be
conveniently explored by using Modular Rings. Here we use three rings, Z,,Z¢,Z,, . A
number of related studies of primes within modular rings have already been made
[1,2,3,4,5,6,7]. Each ring contains all the integers, partitioned into classes.

Initially, we look at the squares of primes within the ring Z,. Squares and the row
structures of squares are well understood for this modular ring [8]. Details of the rings
have been given previously [9,10], so we merely give a brief summary of them here. The

four classes of Z, are given by (47, +i) in which i is the Class and 7, is the row in a
tabular array of i. Obviously, even integers € {(_)4,5.4 and odd integers € {1454 . There

are no powers in 24 and no even powers in 3.
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Integers in Z,, which has six classes, are given by (6r,. +(i —3)) (Table 1). Of the
three classes, 56,4_16 and 66 which contain odd integers, Class 26 contains no even

powers, while Class 66 contains only those integers N such that 3|N ;

Row { \Class — 16 2 3, 46 36 66
0 -2 -1 0 1 2 3
1 4 5 6 7 8 9
2 10 11 12 13 14 15
3 16 17 18 19 20 21
4 22 23 24 25 26 27

Table 1: Array of Z,

Integers in the ten classes, ie Z,, are given by (IOr,. +i). For this ring, the right end

digits (REDs) are all the same for a given Class; that is, integers in 310 all end in 3, and
SO on.

2. Squaresin Z,
Within the modular ring Z,, squares of odd integers fall in very well defined rows

and only in the Class 14. It is of interest therefore to examine the row structure of the
squares of primes to see whether such structure can provide further evidence of how
primes are distributed, and thus give more depth to prime characterisation.

The odd squares are given by 4R, +1 and the row is always even, with 6|R, , unless

3|N [8]. Since we are only concerned with primes here, the square will fall in rows given
by

R =6K, j=0l23 2.1)

where K is a generalized pentagonal number defined by

1n(3n-1), evenj,
;= {% a@n+l), odd i, (22)
with n=1,2,3,.. [8,12]. This yields
_ 1(j+2), evenj,
_{%(j+1), odd j. )
Thusin Z,,
pf=24Kj+1 24)
=6(6n? —2n, ) +1 '
when

K, =1n0n-1)

This is equivalent to a prime in Class 26 (e Z,) being squared; that is,
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(67, 1) = 6(6r2 —2r, )+1, (2.5)

so that
n =r,.
Hence all primes with K =1n, (3n, —1)e Z, would occur in 26 €Z,. As with Z,, so

too in Z, odd squares (34N) are confined to one Class, namely 4, as can be seen from
Equation (2.5).
Similarly, if
K, =3n,(3n, +1),
then the prime will occur in a site in 4 € Z, since, in this case
24K, +1=6(6n2 +2n,)+1, (2.6)

and

(6r, +1)* =6(6r2 +2r, )+1. .7)
Table 2 lists differences between composites and primes in terms of constraints on Right
End Digits (REDs).

Ring Integer type Row* of K* n, n,
square
prime #5 Oor2 0,2,5,7 #1,6 #49
Z, composite 3
does not divide 0,2,6 0,1,2,5,6,7 0,1,2,3,4,5,6,7,8,9
N
prime Oor8
Z6
composite 0,4,8

Table 2: Right End Digit (RED) Constraints on Various Rows & Parameters

Primes from both Classes 1s and 34 contribute to 7, and », but the parity of n
indicates the Class of the prime (Table 3).

Fmn) Class of p Parity of n
Yan(3n-1) 14 odd
v even
34
Yan(3n+1) la even
34 odd

Table 3: Class and Parity

Primes in Class 14 equal a sum of squares (x2 + y2) [1]. In contrast to composite
integers, there is only one value for x and y which have opposite parity and no common
factors. When n, is odd and n, is even, the corresponding primes are from Class 14
(Table 3). Hence, for these n values:
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6n, —1=x>+y*, (n, odd), (2.8)

so that
n = %(x2 +y? +1), (2.9)
and
6n, +1=x>+y*, (n, even), (2.10)
and
n, =1(x? +y? 1) @.11)

Primes in Class 34 equal a difference of squares (x2 -y? ), with x,y a unique pair, unlike
composites which have multiple pairs [2]. For this Class, », is even and n, odd (Table
3), and

6n, —1=x>-y°,
2.12)
so that
n, =%(x2 -y’ +1), (n, even), (2.13)
and
n, =ix* -y*-1) (n, odd).
2 6( y )’ (n, ) (2.14)

In this way, rows containing primes in the modular ring Z, may be equated to
functions from the modular ring Z,. Table 4 lists values of », for primes in the range
5<p<1013. A similar set can be generated for n, (being the set of rows containing

primes in Class 4 ).

Values of n from F(n) =1n(3n—1) [n=row for primes € 2¢]
1,2,3,4,5,7,8,9,10,12,14,15,17,18,19,22,23,25,28,29,30,32,33,
38,39,40,42,43,44,45,47,49,52,53,58,59,60,64,65,67,70,72,74,
75,77,78,80,82,84,85,87,93,94,95,98,99,100,103,107,108,109,
110,113,114,117,120,124,127,129,133,135,137,138,140,143,
144,147,148,152,155,157,158,159,162,163,164,169

Table 4: Values of n, for primes in the range 5<p<1013.

The missing » values in Table 4 (6,11,13,...) belong to composite integers and follow an
equation of the form

n =a, +pd, (215)

where p is a prime and a, € Z for a given p, with d=0,1,2,2,3,4,... .The values of p—a,
equal the rows of the prime pe Z, (Table 5). When pe is,(p—ao) < 0 (Table 5).

Thus,

6n, =1+(5+6d)p, (p eé_’rel
or

6n, =1+(7+6d)p, (p e 26)
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A sieving method could be used to find » values corresponding to primes (Figure
1). A simpler method along these lines has been used to identify twin primes [5,7].

D Row Class p-a,
7 1 46 1
11 2 3 -2
13 2 dg 2
17 3 % -3
19 3 46 3
23 4 3 -4
29 3 26 -5

Table 5: Values of p—a,

3. Primes from P =h2" -1
Riesel [11] gives extensive tables of nAh combinations that produce primes from
(h2” + 1). Here we consider only (42" —1), since the same analysis can be applied to
(2" +1).
Many of the n sequences for a given 4 can be found in the array of Table 4, and since
these » represent rows in Z, which contain primes, the following question arises: Are the

n values of the (h2” - 1) actually prime-containing rows in modular rings?

As can be seen from Table 6, they are. It is found that all » (except in the very high
range) identify rows which contain one or more primes. Predominantly these rows occur

in Z, and Z,, and occasionally in Z,. For Z the primes are given by
p=6ntl (3.1)
so that if P represents the prime from the (/4,#) function, then

In(P +1) = (2% h)+ (%)(n2) p, (p € 26), (3.2)
and
(P +1)= 2% )+ (%) 2)p. (p € o). (3.3)

Similar log-linear relationships occur in the corresponding cases for Z, or Z,,. For a

given h, then, the derived primes P are simply related to the primes in row n of one of
these three modular rings.

Table 7 illustrates the Ring and Class distribution pattern of rows which contain
primes for different /4 values. In general, when 4 is a prime the number of values of » are
less than for composite 4. Only ~=181, 199 have more than 30 valid ».

Table 8 lists » values which do not correspond to rows which contain primes in any of
these three modular rings. However, in most cases (75%), when nx1 or n+2 are taken
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as the rows, these contain primes in either Z, or Z,,. It seems that the linearity of
Equations (3.2) and (3.3) becomes unstable at these large » values.

No. of A i
N=TOW which (for Z,) Class Primes
contain »n
1 37 6 26, 4¢ 5,7
10 L. 710 11,17
2 37 6 26,46 11,13
10 310 ,§10 23,29
3 35 6 26,46 17,19
10 Lo 710 31,37
4 28 6 26 23
10 lio ,310 ,710 41,43,47
5 31 6 26, 46 29,31
10 310 ,§10 23,59
6 21 6 4 37
10 ilo ,710 61,67
7 20 6 26,46 41,43
10 ilO ,510,610 71,73,79
8 20 6 2 47
10 355, 910 83,89
9 20 6 2 53
10 7 97
10 20 6 26,46 59,61
10 110,310, 710,910 101,103,107,109
11 21 6 e 67
10 3 113
12 16 6 26,46 71,73
10 Tho 127
Table 6: Rows which contain at least one prime
ZG ZIO * Z4 *
h % 46 it is
3 | 1,2,3,4,7,18,38, 1,2,3,6,7,11,18,38, 306, 12676 (im) 304 (14)
43,64,94,103, 55,76,103,143,206, ) (— )
143 ,470,1274 216,391,458 827 B
15 | 1,2,4,5,10,14,17, 1,2,5,10,17,73,125, 224 (310) 1004
80,82,157,172, 172,202,266,293, (54)
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289,463 1246 2431 (7,0)
27 | 1,2,4,5,8,10,14,28, 1,2,5,10,37,38,70, 160, 253 (im)
38,70,170,329,485, 121,122,170,500 362 310)
500,892,1580
454 éio)
574 (110,310,510)
181 3,5,7,9,17,23,43, 3,5,7,11,17,23,35,47, 281 %510;
47,85,267,653, 83,99,101,195,363, -
4783 391,623,653,1091, 319 {7
1147 673 \310,710
701 (310 . §1o;
5345 (310
Table 7: n=row of prime(s) in i € Z,
* only calculated when Z; row, n, has no primes; (see Table 6)
h n n' n-n' Ring for »’ Class of
Z, Z, prime in
row n'
3 3276 3280 -4 V 46
3277 -1 v Lio
4204 4205 -1 v 26
4201 -3 v 30
5134 5135 -1 v 26
5132 2 v 91
7559 7556 3 v 46
7557 2 v Lo
15 2066 2067 -1 v 26
2064 2 V Lio
2705 2709 -4 v 26
2701 4 v 710
2709 -4 v i
4622 4625 -3 v 4
4626 -4 v Lio
5270 5268 2 v 26
5269 1 v Tio
7613 7616 -3 v 46
7614 -1 v 71
27 2642 2636 6 v 46
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2647 -5 v %%

2708 2709 -1 26
2703 5 v Lo

4505 4503 2 26
4506 -1 v Lo

181 1565 1562 3 46
1566 -1 v 710

3273 3277 -4 26
3271 2 V] T
3661 3659 2 v 90

3666 -5 46

3923 3918 5 4
3920 3 V 9

4127 4130 3 4
4124 3 v 305

5267 5262 5 46
5269 -2 v 1o

5747 5750 -3 46
5749 -2 v 30

be obtained when integer structure is taken into account.

1.

Table 8: Values of #» which do not correspond with rows which contain primes

4. Concluding Remarks

As has been shown in our previous studies [1-7], functions which involve primes are
usually Class specific. Hence, a greater understanding of primes and their distribution can
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Figure 1: m-value sieve for primes in Class 2s:
underlined values are n values for primes
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