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1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions are
defined as ([7], [6])

S(n) = min{m € N: n|m!}, (1)
Z(n)=min{m€N: n|—mz2il—)}, (2)
Sp(n) = min{m € N: p"|m!} for fixed primes p. 3)

The duals of S and Z have been studied e.g. in [2], [5], [6]:

S,(n) = max{m € N: ml|n}, _ (4)
Z.(n) = max {mEN: —TLm;-—Qh’L} (5)

We note here that the dual of the Smarandache simple function can be defined in a
similar manner, namely by

Spe(n) = max{m € N: m!|p"} (6)

This dual will be studied in a separate paper (in preparation).

2. The additive analogues of the functions S and S, are real variable functions, and
have been defined and studied in paper [3]. (See also our book [6], pp. 171-174). These
functions have been recently further extended, by the use of Euler’s gamma function, in
place of the factorial (see [1]). We note that in what follows, we could define also the
additive analogues functions by the use of Euler’s gamma function. However, we shall
apply the more transparent notation of a factorial of a positive integer.

The additive analogues of S and S, from (1) and (4) have been introduced in [3] as
follows:

S(z) =min{m e N: z<ml!}, S:(1,00) =R, (7)

resp.
S.(z) =max{m e N: m! <z}, S,:[l,00) =R (8)
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Besides of properties relating to continuity, differentiability, or Riemann integrability
of these functions, we have proved the following results:

Theorem 1.
logz

5.(0) ~ s (& 00) )
(the same for S(z)).
Theorem 2. The series
= 1
— (10)
; n(S.(n))

is convergent for oo > 1 and divergent for o < 1 (the same for S.(n) replaced by S(n)).
3. The additive analogues of Z and Z, from (2), resp. (4) will be defined as

Z(x)zmin{meN: ng(—mQLl)} ) (11)
Z.(z) = max {m eN: T(—m;_—l) £ x} (12)

In (11) we will assume z € (0, +00), while in (12) z € [1, 4+00).
The two additive variants of S,(n) of (3) will be defined as

P(z) = Sy(z) = min{m € N: p® < m!}; (13)

(where in this case p > 1 is an arbitrary fixed real number)

P,(z) = Spu(z) = max{m € N: m! <p°} (14)
From the definitions follow at once that
Z@) =k & xe((k;l)k,k(k;”] for k > 1 (15)
Zuz) =k © xE[k(k;—l),(k+l)2(k+2)) (16)
For z > 1 it is immediate that
Zy(z) + 12 Z(z) 2 Z,(x) (17)

Therefore, it is sufficient to study the function Z,(z).
The following theorems are easy consequences of the given definitions:
Theorem 3.

1
Z(z) ~ 5\/837 +1 (z— 00) (18)
Theorem 4.
= 1
————— 1is convergent for a > 2 (19)
,,X;: (Z.(n))=
> 1
and divergent for a < 2. The series ————— 18 convergent for all o > 0.
Lz
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D(k+2
Proof. By (16) one can write ks +1) <z< (k+ L)+ ), ok2+k—-2r<0

and k2 + 3k + 2 — 2z > 0. Since the solutions of these quadratic equations are ko =

—1+v8z+1 -3++Bz+1 Vv —3
ik s , resp. k34 = SEver T , and remarking that —ﬁ—;— >1 &
x > 3, we obtain that the solution of the above system of inequalities is:
[ V1 -1
ke ll,——Lsm——] if ze€(1,3);
$ (20)
V1 -3 V1 -1
ke( il Chow M } it e 3,+00)
\ 2 2
So, for x > 3
V1 — V1 -1
__—I—_28_x_3 < Z*(x) < _+28L_ (21)

implying relation (18).
Theorem 4 now follows by (18) and the known fact that the generalized harmonic

1
series E —; is convergent only for 6 > 1.
n

Thg tlhings are slightly more complicated in the case of functions P and P,. Here it is
sufficient to consider P,, too.
First remark that
logm! log(m + 1)!

«(x) = , - ). 2
P(z)=m & z€ T logp ) (22)

The following asymptotic results have been proved in [3] (Lemma 2) (see also [6], p.
172)

mloglog m! loglog m!
log m! " loglog(m + 1)!

logm! ~ mlogm, ~1 (m— o) (23)

By (22) one can write

m loglog m! mlogz _ mloglog(m + 1)! m
l logp < < logl
log m! log BB = logm! — log m! ~ (log ng)l gm!’
m log x :
giving — 1 (m — 00), and by (23) one gets logz ~ logm. This means that:

log
Theorem 5.

log P,(z) ~ logz (z — 00) (24)
The following theorem is a consequence of (24), and a convergence theorem established
in [3]:

o0 a
1 [ logl
Theorem 6. The series Z -~ (__og ogn) is convergent for a > 1 and divergent
4= n \log P,(n)
for a < 1.
log1
Indeed, by (24) it is sufficient to study the series E ( s ogn) (where ng € N
logn

n>no
is a fixed positive integer). This series has been proved to be convergent for o > 1 and

divergent for a <1 (see [6], p. 174).
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