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Introduction

By R, we denote the set of all positive real numbers and V' = {1,2,...}.
Let

9={g}nt1
be sequence such that:
gn € R4, (ay)
(V€ N)(gn < gnt1), (az)
¢ is unbounded. (as)

For any @ € R4 we denote by 7(x) the number of all terms of ¢, which are not greater
than x.
When x satisfies the inequality
0<a< 91
we put
r(z) = D.

Remark 1: The condition («3) shows that the number 7 () is always finite for a fixed z.
The main result in this paper is the following
Theorem: Let a,b € Ry and b > ¢;. Then the identity

r(b) m(gr)—m(% "
a a
Do) =m(p)ab) + Y -) (1)
i=1 gl J=1 g”(%)‘}']
holds.
Remark 2: When
a a
r(=) = n(3)
)
r(2)-r(%)
we put in (1) Y, e to be zero, i.e., the right hand-side of (1) reduces to n(%).vr(b).

i=1



Thus, under the conditions of the above Theorem, identity

w($).7(b), if () = m($)
e a
ZW(;) = m(g)=m($) (1,)
i=1 ! ﬂ'(%) 7(b) + Y (gﬁ((_;;t)ﬂ‘ ), if W(g(—tl) > ﬂ((—é)
j=1

holds.
Proof of the Theorem. First, we note that if « = 0, then (1), i.e., (1’) holds, since

a a

(=) =m(5)=m(0)=0

and therefore, we may use Remark 2.
For that reason, further we assume that « > 0.
First, let us prove (1), i.e., (17) for case b = g¢;.
Now, we have

m(b) =m(g1) =1

and
a a
w(—)=ml3)
g
Hence
a a a
‘F(Z)-F(b) =7m(—).m(g1) =7(—)
9 9
and (1), resp. (1), is proved, since the left hand-side of (1) coincides with 7r(§(,—‘1) Then it
remains only to consider the case
91 <b - (3)
and the proof of the Theorem will be finished.
Let (3) holds. We must consider the alternatives
b< g (el)
and "
b> . (€2)
Let (e1) holds. We shall prove (1) in this case. Inequality (3) implies that interval
a = [g1, 0] (4)
is well defined. Also, (3) and (e;) yield
a a
- — )
A (5)
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Then (5) implies that the interval
a a

P

is well defined, too. Obviously, a N 3 = () and moreoevr, /3 lie to the right side of o on the

A= ] (6)

real axis.
Let ¢;,9; € g ({ # j) be arbitrary. we introduce 7;; putting

-~
~—

Tij = 9i-9;- (
we denote by P the set of these 7; ; defined by (7), for which
g9i€9Na, g;€9Np

and inequality

i X a (8)
holds. Then we consider the alternatives:

P=10 (uy)
and

P#0. (uz)

Let (uq) holds. Then ¢ N 3 = 0.

Indeed, if we assume that there exists g; € g N 3, then we obtain
a
T =919; S 91— =G,
1

i.e., 71 ; satisfies (8). Therefore, 7, ; € P, since g; € g N a. Hence

P £0.
But the last contradicts to (uq).
Now, ¢ N 3 = 0 implies " "
™ ;;) =& Z) 9)
Moreover, the equality
r(w) = m(3) (10)

holds for each x € 3.
Let for 1 =1,2, ..., 7(b): #; = % Then

and therefore for ¢ = 1,2, ..., m(b):
;I?iE[— = (11)
)



Now, (10) and (11) yield

r(5) = x(5). (12
gi
for each 2 = 1,2,...,7(b).
But (12) implies
m(b)
a a ,
m(—) = m(3).x(b), (13)
=1 9gi b
which proves (1), because of Remark 2.
The case (uy) is finished.
let (u3) holds. Then the inequality
a a
w5y > w(3) (14)
9

holds.
Indeed, the assumption that (9) holds, implies

gnNp=40.

Hence P = ). But the last equality contradicts to (uz).
Now, (14) implies that
gnp#

and that
Ir(e)4k €E9NJ

m(o-)—7(%)
at least for & = 1. Therefore, the sum ! Y, e from the right hand-side of (1) is well
j=1
defined.

We shall use the following approach to prove (1) in the case (uz). First, we denote by
O(c, 3) the number of all elements of the set P. Second, we shall calculate §(«, ) using two
different ways. Third, we shall compare the results of these two different calculations and
as a result we shall establish (1).

First way of calculation

Let

E={1,2,...,7(b)}.

If 2 describes E, then g; describes ¢ N a.

Let Ey C E be the set of those i € E for which there exist at least oen j, such that
g; € gNpand 7;; € P. For each ¢ € F; we denote by 6; the number fo those ¢g; € ¢ N 3, for
which 7; ; € P. Then, equality

0(a,f) =) & (15)

1€E,
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holds.
On the other hand, from the definition of these g; it follows that they belong to interval

(%, %] Hence, for : € F;
i = () — n(3). (16)
Remark 3: From the definitions of §; and FE; it follows that é; > 0.

Let : € E,, where
E2 =F - El-

Then

because in the opposite case we will obtain that 7 € Ey, that is impossible, since EyNE; = ().
Hence for « € F,

7r(—g*i) =m(3),
ie., for: e FE, ; “
W(f)—'ﬂ(l—)zﬂ (17)
gi 4
Now, (15), (16), and (17) imply
a a
0(a,p) =) (n(—=)—7(7)),
- b
er Y
ie.,
il a
0o, ) =) (=) = m(3).7(b). (18)
=1 L
Second way of calculation
Lk i a ) a a
W= {7‘((3) +k|k=12,..,7(—)— 71'(3)}
g

Of course, we have W # (), since (uy), i.e., (14), is true.
When j describes W, g; describes ¢ N 3. For every such j it is fulfilled

91 < 2 < b (19)
9;
Therefore, there exist exactly ”(g%) in number ¢; € ¢ N 3, for which 7; ; € P. Hence
a
0o, B) =) m(—).
e W]
JEW
Thus, using the definition of W, we finally get
r(&)-n(%
a
0o, )= > = ) (20)
=1 Ir($)+s
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It we compare (18) and (20), we prove (1) in case (uz).
Up to now, we have established that (1) (and (1)) holds, when

]

7 (21)

g1 <b<

and case (usy) 1s finished too.
Now, let (e2) hold. To prove (1) (and (1)) in this case we consider the alternatives
a

3 <o (€21)

and
a

A 2 G- (e22)

Let (e21) hold. Then n(%) = 0 and (1) looks like

il a N(Z%) a
r(oy =3 (). (22)
=1 9i 3=1 9;

We must note, that (21) imlies b > S% Then (22) will be proved, if we prove that for all
ke N "
m( J =l (23)
Ir(5o)+k

But r(2)+k g W. Then we have that Ir( )4k > g(—Ll Hence, for all k € N
1

a

< ¢1-
Ir(gr)+k

The last inequalities prove (23), since 7(¢;) = 1 and for 0 < & < ¢; it is fulfilled 7 () = 0.
Therefore, (22) is proved, too, and the case (€31) is finished.

Let (e32) holds. Then it is fulfilled

m§%<a (24)

We introduce the number b; putting

a

1)1 = z (25)
Then, we find
a
b= —. 26
. (26)
From (24), (25), and (26) it follows immediatelly
g1 <by < —. (27)
by
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Obviously, (27) looks like (21) (only b from (21) is changed with b; in (27)). But we
proved that (21) imply (1). Therefore, (27) imply (1), but with b, instead of b. Hence, the
identity

(b1) (o) (%)

a a a
dor(=)=w)ab)+ o Y, ) (28)
j=1 g.] 1 Jj=1 gﬂ'(gal‘H'J

holds and Remark 2 stays valid again after changing b with b;.
Using (25) we rewrite (28) in the form

(%) r(&)=r(b)
a a a
dor(=)=w(p)ab)+ Y ) (29)
i I j=1 bt
First, let 7(b) = (%) In this case (29) coincides with (1) and (1) is proved, since (29)

is true.
Second, let Tr(%) < m(b). Then we add to the two hand-sides of (29) the sum

m(b)—m(%) B
Y )
=1 Ir($)+s

and obtain again (1). This finishes the proof of (1) in this case, too, sence, (29) is true.
Since, we have no other possibilities (the inequality 7(b) < 71'(%) is impossible, because
(e2) ), we finish with the case (e22). Hence, the case (e3) is finished too.
The Theorem is proved.
Further, we use some well known functions (see, e.g., [1]):
e+ e " e’ —e” sha chx

chr= ———, sht = ——, thr = —, cthr = —.
2 2 7 cha’ .

Corollary 1: Let a = chx, b = shx, where v € Ry and shx > ¢;. Then, the identity

7(sha).7(ctha), if W(C},lll ) = wicthe)
m(sha
cha
77( ) = ( Chl) m(ctha)
i=1 gi = N _ hT cha
7(sha).7w(cthe) + v 7r(g ), if m(==) > 7(cthe)
o r( ctha)+; g1
(30)
holds.

The same way, putting: « = sha, b = cha, where @ € Ry and cha > ¢4, as a corollary
of the Theorem, we obtain another 1dentity, that we do not write here since one may get it
putting in (30) cha,sha, tha instead of sha, cha, ctha, respectively.

Now, let g be the sequence of all primes, i.e.,

g=2,35711,13,.

135



Then the function m(x) coincides with the famous function 7 of the prime number distribu-
tion. Thus, from our Theorem we obtain

Corollary 2: Let a,b € Ry, b > 2 and {p,}.2, is the sequence of all primes. Then the
identity

a a a a a a a
m(—)+7(—)+ ...+ 7( ) = 7 (). 7(b) + 7( ) + 7 ( ) + ... (
P D2 Pr(b) b Pr($)+1 Pr($)+2 Pr(g)

(31)

holds.

In (31) m(x) denotes (as usually) the number of primes, which are not greater than z.
Also, the right hand-side of (31) reduces to 7'('(%.7‘&'([)) if and only if 7(§) = 7(3).

Finally, we must observe that the main result of the present paper was discovered trough
the year 2001 in Sinemoretz (a Bulgarian vilagge on Black See).
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