CONVERSE FACTOR: DEFINITION, PROPERTIES AND PROBLEMS

Krassimir T. Atanassov

CLBME - Bulg. Academy of Sci., P.O.Box 12, Sofia-1113, Bulgaria e-mail: krat@bgcict.acad.bg

The paper is a continuation of [1], where the concept of irrational factor has been introduced.

Every natural number n has a canonical representation in the form $n = \prod_{i=1}^{k} p_i^{\alpha_i}$, where $p_1, p_2, ..., p_k$ are different prime numbers and $\alpha_1, \alpha_2, ..., \alpha_k \geq 1$ are natural numbers.

In [1] it is juxtaposed to n the (real) number $IF(n) = \prod_{i=1}^{k} p_i^{1/\alpha_i}$.

Now, we juxtapose to n the (natural) number $n' = \prod_{i=1}^k \alpha_i^{p_i}$.

It can be easily seen that if for every i $(1 \le i \le k)$ $\alpha_i = 1$, then n' = 1. On the other hand, if there is at least one $\alpha_i > 1$, then $n' \ge 1$.

Let us denote n' by CF(n) and let us name it "Converse Factor" of n.

It can be seen that CF is a multiplicative function.

Indeed, let m and n be two natural numbers, for which (m, n) = 1. Therefore, if n has

the above form and $m = \prod_{j=1}^{l} q_j^{\beta_j}$, where $q_1, q_2, ..., q_j$ are different prime numbers, for every

 $i \ (1 \le i \le k)$ and for every $j \ (1 \le j \le l) : p_i \ne q_j$, and $\beta_1, \beta_2, ..., \beta_l \ge 1$ are natural numbers, then

$$CF(n.m) = \prod_{i=1}^{k} \alpha_i^{p_i}. \prod_{j=1}^{l} \beta_j^{q_j} = CF(n).CF(m).$$

On the other hand, if for the prime numbers a, b, c: m = a.b and n = b.c, then

$$CF(m.n) = CF(a.b^{2}.c) = 2^{b} > 1 = CF(ab).CF(bc) = CF(m).CF(n).$$

CF is not a monotonous function.

If $k = l, p_1 = q_1, ..., p_k = q_l$ and $\alpha_1 \ge \beta_1, \alpha_2 \ge \beta_2, ..., \alpha_k \ge \beta_l$, then $n \ge m$ and $CF(n) \ge CF(m)$. The inequality will be strong if at least one of the inequalities between α_i and β_i is strong $(1 \le i \le k)$.

If $k < l, p_1 = q_1, ..., p_k = q_k$ and $\alpha_1 = \beta_1, \alpha_2 = \beta_2, ..., \alpha_k = \beta_k$, then n < m and $CF(n) \le CF(m)$.

There is no relation between n and m when $k \neq l$.

Obviously, $CF(n) \ge 1$ for every natural number n > 1; and for every two natural numbers n and m:

$$CF(n^m) = CF(\prod_{i=1}^k p_i^{m\alpha_i}) = \prod_{i=1}^k (m\alpha_i)^{p_i} = m \sum_{i=1}^k \alpha_i . CF(n).$$

In [2] is defined the following function, too: $\zeta(n) = \sum_{i=1}^{k} \alpha_i p_i$. For every natural number

$$\zeta(n) = \sum_{i=1}^{k} \alpha_i p_i = \sum_{i=1}^{k} p_i \alpha_i = \zeta(CF(n)).$$

For the Möbius function μ (see e.g., [3]) for every natural number n is valid the following equality

$$\mu(n) = (-1)^{\underline{cas(n)+1}} \cdot \left[\frac{1}{CF(n)}\right],\tag{1}$$

where for every integer number n function $\underline{cas}(n)$ is the number of the prime divisors of n and [x] is the integer part of real number $x \geq 0$.

Really, if n is a prime number, then

$$(-1)^{2}\left[\frac{1}{1}\right] = 1 = \mu(n);$$

if $n = p_1 p_2 ... p_s$, where $p_1, p_2, ..., p_s$ are prime numbers, then $\underline{cas}(n) = s$ and

$$(-1)^{s+1} \left[\frac{1}{CF(p_1 p_2 \dots p_s)} \right] = (-1)^{s+1} \left[\frac{1}{1} \right] = (-1)^{s+1} = \mu(n);$$

if there exists such a prime p that $n = p^s m$, where s, m are natural numbers, m does not divide by p and $s \ge 2$, then

$$(-1)^{\underline{cas}(n)+1} \left[\frac{1}{CF(p^s m)} \right] = (-1)^{\underline{cas}(n)+1} \left[\frac{1}{s^p . CF(m)} \right] = 0 = \mu(n),$$

because at least $s^p > 1$.

n:

It can be easily seen that

$$IF(n) = n$$
 if and only if $CF(n) = 1$ if and only if $|\mu(n)| = 1$.

REFERENCES:

- [1] Atanassov K., Irrational factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, Vol. 2, 1996, No. 3, 42-44.
- [2] Atanassov K., New integer functions, related to φ and σ functions, Bull. of Number Theory and Related Topics Vol. XI (1987), No. 1, 3-26.
- [3] Chandrasekharan K. Introduction to analytic number theory, Springer-Verlag, Berlin, 1968.