SHORT REMARK ON NUMBER THEORY. II

Krassimir T. Atanassov

Centre for Biomedical Engineering - Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, BULGARIA e-mail: krat@bgcict.acad.bg

In [1] they are formulated and proved the following problems:

Problem 1: If a, b, c, d are positive real numbers such that [n.a] + [n.b] = [n.c] + [n.d] for all positive integers n, then a + b = c + d.

Problem 2: If a, b, c, d are positive irrational numbers such that a + b = c + d then [n.a] + [n.b] = [n.c] + [n.d] for all positive integers n.

Here we shall generalize these problems.

Problem 1': Let $m \geq 1$ be a natural number, $a_1, a_2, ..., a_m, b_1, b_2, ..., b_m$ be positive

real numbers. If $\sum_{i=1}^{m} a_i$ and $\sum_{i=1}^{m} b_i$ are natural numbers and if for some natural number

n > m

$$\sum_{i=1}^{m} [n.a_i] = \sum_{i=1}^{m} [n.b_i],$$

then

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} b_i.$$

Proof: For every positive real number x we can write $x = [x] + \{x\}$, where [x] is the integer part of x and $\{x\}$ is the fractional part of x. Then

$$\left| \sum_{i=1}^{m} a_i - \sum_{i=1}^{m} b_i \right| = \left| \frac{1}{n} \sum_{i=1}^{m} (n.a_i - n.b_i) \right| = \left| \frac{1}{n} \sum_{i=1}^{m} ([n.a_i] - [n.b_i]) + \{n.a_i\} - \{n.b_i\}) \right|$$

$$= \frac{1}{n} \cdot |\sum_{i=1}^{m} (\{n.a_i\} - \{n.b_i\})| \le \frac{1}{n} \cdot \sum_{i=1}^{m} |\{n.a_i\} - \{n.b_i\})| < \frac{m}{n} < 1,$$

i.e.,

$$\left| \sum_{i=1}^{m} a_i - \sum_{i=1}^{m} b_i \right| < 1.$$

But, by condition $\sum_{i=1}^{m} a_i$ and $\sum_{i=1}^{m} b_i$ are natural numbers. Therefore

$$\sum_{i=1}^{m} a_i - \sum_{i=1}^{m} b_i = 0,$$

i.e.,

$$\sum_{i=1}^m a_i = \sum_{i=1}^m b_i.$$

Problem 1": Let $m \ge 1$ be a natural number, $a_1, a_2, ..., a_m, b_1, b_2, ..., b_m$ be positive real numbers. If for every natural number n

$$\sum_{i=1}^{m} [n.a_i] = \sum_{i=1}^{m} [n.b_i],$$

then

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} b_i.$$

Proof: As above we obtain that

$$\left| \begin{array}{ccc} \sum_{i=1}^{m} a_i - \sum_{i=1}^{m} b_i \right| < \frac{m}{n}$$

for every natural number n. Let n divergents to ∞ with natural values. Therefore

$$\left| \sum_{i=1}^{m} a_i - \sum_{i=1}^{m} b_i \right| \le 0,$$

from where we obtain that

$$\sum_{i=1}^m a_i = \sum_{i=1}^m b_i.$$

Obviously, Problem 1 is a partial case of Problem 1' and Problem 1".

Problem 2': Let $m \ge 1$ be a natural number, $a_1, a_2, ..., a_m, b_1, b_2, ..., b_m$ be positive real numbers. If

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} b_i,$$

then for every natural number n

$$\left| \sum_{i=1}^{m} [n.a_i] - \sum_{i=1}^{m} [n.b_i] \right| \le m-1.$$

Proof: Now, we obtain

$$\begin{vmatrix} \sum_{i=1}^{m} [n.a_i] - \sum_{i=1}^{m} [n.b_i] | = |\sum_{i=1}^{m} (n.a_i - \{n.a_i\}) - \sum_{i=1}^{m} (n.b_i - \{n.b_i\}) | = |\sum_{i=1}^{m} (\{n.a_i\}) - \{n.b_i\}) | \le \sum_{i=1}^{m} |\{n.a_i\}\} - |\{n.b_i\}| < m.$$

But $\sum_{i=1}^{m} [n.a_i]$ and $\sum_{i=1}^{m} [n.b_i]$ are natural numbers, from where it follows that

$$\left| \sum_{i=1}^{m} [n.a_i] - \sum_{i=1}^{m} [n.b_i] \right| \le m - 1.$$

When m=1 we obtain Problem 2 in a more general form, because the condition for irationalness of a, b, c, d.

REFERENCE:

[1] Honsberger R., Mathematical Gems. III. Mathematical Assoc. of America, 1985.