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NOTE ON CYCLOTOMIC POLYNOMIALS AND LEGENDRE SYMBOL
Mladen V. Vassilev - Missana
5, V. Hugo Str., Sofia-1124, BULGARIA

In memory of my father

In the paper the following denotations are used: ¢(m) - for Euler’s function; (%) - for
Legendre symbol; (p,n) - for the greatest common divisor of p and n; d|m - for the fact that
d is a divisor of m; p - for Mobius function; ®,,(z) - for the m—th cyclotomic polynomial.

Here we remind that
(I)m(x) = H(xd - 1)#(%),
dlm

where d runs all divisors of m.
Let n and « be arbitrary positive integers and k = n.p®, where r is a fixed odd prime,

such that (p,n) = 1.

Let -
Flassh— ;(‘I’f)» 0

The following theorem is the mail result of the present paper.
THEOREM: The representation

f(n;p) =p—o(n) (2)
holds, when
p = 1(mod n). (3)
Otherwise
f(n;p) =p. (4)
Let ¢ be fixed prime number, which may satisfy everyone of the congruences:
q = 3(mod 8); (5)
q = 7(mod 8); (6)
and
q—1 2 _1q
g(n;q) = _( )- (7)
t=0 4

Then the second result in the paper is the following
Proposition: The identity

g(n;q) = -1 (8)



is valid.
To prove the theorem we need three lemmas.
LEMMA 1: The congruences:
®,,(t) = 0(mod p); (9)
;. (t) = 0(mod p) (10)
are fulfiled, or are not fulfiled simultaneously.
The proof of this lemma is a direct corollary from Theorem 94 and Theorem 95 [1] and

we omit it.
LEMMA 2: The necessary and sufficient condition for every nonnegative integer ¢ to have

®(t) = 1(mod p) ‘ (11)

is (3) to be not fulfiled.
Proof: Fermat’s Little Theorem immediatelly yields

3, (") = &, (") (mod p) (12)

for every nonnegative integer t. Then (12) and the well known representation

Ox(t) = S”Tg% (13)
yield
Op(1). P (t) = Pn(t)(mod p). (14)

First, let (3) be fulfiled. Then for every nonnegative integer ¢ (9) is impossible, because
of Theorem 94 [1]. Divide the both hand-sides of (14) by ®,(t) we obtain that (11) is fulfiled
for every nonnegative integer ¢.

Second, let (11) be fulfiled for every nonnegative integer ¢. Then for every nonnegative
integer ¢ (10) is impossible and as a result of Lemma 1 (9) is impossible, too. Hence, (3) is
impossible, because of Theorem 95 [1]. The lemma, is proved.

LEMMA 3: If (3) holds, then the necessary and sufficient condition for some nonnegative
integer ¢ to have (11) is for the same ¢ (9) to be not fulfilled.
Proof: Let (3) holds.

First, let us suppose that for some ¢ (9) is impossible. Then (14) yields (11) immediatelly,
because we may divide the both hand-sides of (14) by ®,(t) # 0.

Second, let (11) be fulfiled for some ¢. Then, moreover we have that (10) is impossible,
and as a result (9) is impossible, too, because of Lemma 1. The lemma is proved.

Proof of the Theorem: We consided the following two cases:
ay) p satisfies (3);
ag) p does not satisfy (3).
Let a; holds. In this case the both congruences (9) and (10) are solviable simultaneously,
i.e., for one and the same values of ¢ (because of Lemma 1).

126



If ¢ runs the set {0, 1,...,p — 1}, then the number of these ¢, which satisfy (9) equals to
¢(n) (because of Theorem 94 [1]). The same number is for the solutions of (10) (because of
Lemma 1). So, the number of these ¢ € {0,1,...,p — 1}, which satisfy the condition

D (t
(*H9) 40 (13
p
(i.e., for wnich (10) is impossible) is just equal to p — ¢(n). But (10) is impossible iff (11)
holds (because of Lemma 1 and Lemma 3). Therefore, when ¢ € {0,1,...,p — 1} and (15)

holds, we obtain
Dy ()

( p
for p — ¢(n) values of ¢ in the right hand-side of (1). This proves (2).
Let ag holds. In this case we have (11) for every t € {0,1,...,p — 1} (because of Lemma
2) and as a result (16). Therefore,

J=1 (16)

flsp)=) 1=p (17)

(see (1)), which proves (4). The Theorem is proved.
Proof of the Proposition: Let ¢ satisfying (5) or (6), be a fixed prime. Then we have

=L

q
Ift € {1,2,...,qg— 1}, then we denote by ¢~! this number of the set {1,2,...,q — 1}, which
satisfies the congruence

)= 1. (18)

tt™! = (mod q).

Now, using (18) and some well known properties of Legendre symbol, we have:

g(n;q) = (_71) + é(t% i G +§((—1)(1q— t "))
(S AT o S E R -
= 1+(‘1)+t§( . = 1+;(q)( . )
= —1—2(&;_1_))_ (19)
When ¢ runs the set {1,2,...,¢ — 1}, 7! runs the same set. Therefore
g—1 t2n -1 B q—1 (t_l)gn . 1)
;( )= g(———q ). (20)
From (19) and (20) we obtain
gimig)=—1= Z(tznq_ =1+ (_71) - ';(tz"q— L) = —2- g(ns0).



Hence
g(n;q) = -1

and the Proposition is proved.

APPENDIX:
Further ord,z denotes the maximal nonnegative integer v with the property: p? divides

7
THEOREM 4 [1]: 1. The necessary and sufficient condition for the solviability of (9) is

(3).

2. If (3) holds, then the solutions of (9) are the numbers, which belong
to exponent n with respect to modulus p. The number of the nonnegative solutions of (9),
which are < p, is just equal to (n).

3. If z is a solution of (9), then

ordy,®,(x) = ord,(z" — 1).
THEOREM 5 [1]: 1. The necessary and sufficient condition for the solviability of (10) is

(3).

2. If (3) holds, then the solutions of (10) are the numbers, which belong
to exponent n with respect to modulus p. The number of the nonnegative solutions of (10),
which are < p, is just equal to ¢(n).

3. If z is a solution of (10), then

ord,Pi(z) =1,
if k> 2.

Reference:
[1] T. Nagell, Introduction to Number Theory. John Wiley & Sons, New York, 1950.

ERATA:
Formula (10) from M. Vassilev’s paper “On a formula related to the n—th partial sum of
the harmonic series” in NNTDM, Vol. 6 (2000), No. 2, 64-68:

1 1 1 1

—(In(m+14+-).In(m+-)) < . 10

Cn(m + 14 ) n(m ) < (10)
must be read as: g i i !

—(In(m+14+-)—In(m+-)) < . 10

Cin(m 14 )~ Infm + ) < s (10)
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