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Abstract

We express the values of the Dirichlet inverse f~! in terms of the values
of f without using the values of f~!. We use a method based on representing
1 f = J as a system of linear equations. Jagannathan has given many of the
results of this paper without proof starting from the basic recurrence relation
for the values of f~1.

1 Introduction

By an arithmetical function we mean a complex-valued function of a real variable,
which is zero if the argument is not a positive integer. The Dirichlet convolution of
two arithmetical functions f and g is defined as

=" f(d)g(n/d). (1.1)

d|n

The Dirichlet convolution is associative and commutative. The function ¢, defined
as 0(1) = 1 and 6(n) = 0 for n > 1, serves as the identity under the Dirichlet
convolution. The Dirichlet inverse of an arithmetical function f is the arithmetical
function f~! such that

frft=ftep=0 (1.2)

An arithmetical f function possesses the Dirichlet inverse if and only if f(1) # 0.
From (1.1) and (1.2) we obtain the usual recursive expression for the Dirichlet inverse
as f71(1) =1/f(1) and for n > 1

ft Z f~Hd) f(n/d). (1.3)

din
d<n

In this paper we present some explicit expressions for the function values f —1(n).
To be more precise, we express f~1(n) in terms of the values of f without using the
values of f~1.
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We adopt a known method (see e.g. [4], [5], [6], [8]) based on representing (1.2)
as a system of linear equations. As an example we give expressions for the Mobius
function which is the Dirichlet inverse of the constant function 1. Jagannathan [3]
has given many of the results of this paper without proof starting from the basic
recurrence relation for the values of f1.

2 Expressions

Let f be an arithmetical function possessing the Dirichlet inverse, that is, with
f(1) # 0. It is easy to see that (af)~! = 1f~! for any nonzero complex constant
a. Therefore, in deriving expressions for f~1(n), we may without loss of generality

assume that f(1) = 1.

Theorem 2.1 Let f be an arithmetical function with f(1) = 1. For n > 2,

72 1 0 0 0
f(3) 0 0
4 2 0 1 0
1) = (1) det f(4) f(. )
fin—1) f(231) 520 fE -1
f(n) f(%) f(%) f(%) Tt f(ﬁ%T) (n—1)x(n—1)
(2.1)

or

£ = (=17 et (D -y

Proof Applying (1.2) at 1,2,...,n and noting that f(1) = 1 we obtain a system

of n linear equations with n unknowns f~1(1), f71(2),...,f"(n) as
1-f~1(1) =1,
FRFH M) +1-f712) =0,
FBH W) +0- 2 +1- f71(3) =0, (2:2)
FOfTTO+FRFTH@)+0- @) +1-fT(4) =0

1 0 00 F=11) 1
f2) 100 712 0
f3 0 10 f713) =0
f@ f@ o 1 1@ 0

nxn ' nx1 ' nx1
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By Cramér’s rule,

1 0 00 1
f2 1 00 0
fHn) = det f@ 0 1.0 0
7(4) 01 0

nxn

Expanding by the nth column we obtain (2.1). O
Theorem 2.2 Let f be an arithmetical function with f(1) =1. For n > 2,

i)=Y (=1DF > F(di)f(d2) -+ f(dw), (2.3)
k=1 djdy---dp=n

di,dg,edp>1

where Q(n) is the number of prime divisors of n, each counted according to its
multiplicity.

Proof Expression (2.3) follows by expanding the determinant expression (2.1). For
each k = 1,2,...,9(n) in the sum of (2.3), n — 1 — k indicates the number of 1’s of
the upper diagonal taken to the product terms of the expansion of the determinant
in (2.1). The details of the verification are as follows.

If we take all the n —2 1’s of the upper diagonal, we must also take the element
f(n) and we arrive at the term (—1)"21"2f(n) or (—1)"2f(n), where (-1)"2is
the parity of the respective permutation. This term in the determinant expansion
corresponds to the index k = 1 in the sum (2.3). If we take the 1’s of the upper
diagonal except for the ith 1, then we must also take the elements f(i+1) and f(;37)
and we thus arrive at the term (—1)""21"73f(i + 1) f(;}7), where (—=1)"3 is the
parity of the respective permutation. Letting ¢ run through the integers 1,2,...,n—2
we obtain the term

n—2
(-nn? ; f+ 1)f(m)

or

(=)™ > fd)f(d)-

dido=n
dy,dp>1

This term in the determinant expansion corresponds to the index k = 2 in the
sum (2.3). Proceeding in this way we see that the determinant in (2.1) is equal to
the sum in (2.3) multiplied by (—=1)"~1. O

Theorem 2.3 Let f be an arithmetical function with f(1) = 1. Letn be an arbitrary
but fized positive integer (> 2). Let ey, es,...,en be the divisors of n, which are > 1.

Then
m m
B (54

= Y (==t 5 11 £ et (2.4)
lll,llz ..... L >0 [T i=1
ele2 elm=n i=1

120



Proof This is a rearrangement of the sum in (2.3 ). In (2.3) the sum is over ordered
sets of divisors of n, while in (2.4) the sum is over unordered sets of divisors of n.
The factor (3.7, 1;)!/ TTi%1 ({;!) counts the number of ways to order the corresponding
divisors. O

We could also apply (1.2) at points other than 1,2,...,n. For example, assume
that f is a multiplicative function. Then the inverse f~! is completely determined
by its values at prime powers. Thus, applying (1.2) at 1,p,...,p" we obtain the
expressions

f(p) 1 0 0
f@* ) 1 0
FH™) = (1) det : ,  (2:5)
fE™Y Fe™?) F) 1
fe™)  fe™Y fe"?) @) /., n
") = > (-1)* S fEMf @) F™), (2.6)
k=1 ilfl-il2+---—\'l-i,;§n
(B
e = > (—1)":1 L H Fphk. (2.7)
11,09, ln >0 I;I(lz)

L1 +2lg+-+nlpn=n

3 Expressions for the Mobius function

The Mobius function p is the Dirichlet inverse of the constant function 1. The
classical expression for the Mobius function is

) = (D" in=pwa-pa, pi #pj (i # J),
0 if there exists a prime p such that p?|n.
Theorem 3.1 Forn > 2,
i+ 1))
J ) (a-1)x(n-1)

bl

p(n) = (~1)"* det (<<

where ((z) = 1 if x is a positive integer and ((x) = 0 otherwise.
Proof Theorem 3.1 is a direct consequence of Theorem 2.1. O
Definition 3.1 For k > 1, let Ag(n) denote the number of k-tuples (di,ds, - .., d)

such that didy---dy = n, di,do,...,d; > 1. In addition, let Ay = 4, that is,
Ay(1) =1 and Ag(n) =0 for n > 1.
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Theorem 3.2 Forn > 1,

pn) =3 (=1)*Ag(n). (3.1)

k=0
Proof Theorem 3.2 is a direct consequence of Theorem 2.2. O

Theorem 3.2 prompts us to study the function Ag(n) in more detail. We shall
express Ag(n) in terms of the well-known function 74(n) (see [2], [7, Chapter IV]).
For k > 1, 7¢(n) is defined as the number of k-tuples (di,ds, ... ,d;) such that
didy - --di = n. In other words, for kK > 1, 7, = (*(*--- % (¢, k times). In
addition, it is convenient to define 79 = d. It should be noted that some authors
(see e.g. [7]) use the notation di(n) for 74x(n). Also note that m3(n) is the classical
divisor function, usually denoted by 7(n) or d(n).

Theorem 3.3 For k>0

k . k:
Ag(n) = z:(—l)Z (i)Tk_i(n)’ n g 1 (3.2)

i=0

Proof If kK =0, both sides of (3.2) reduce to §(n). Let k£ > 1. Denote

Sk(n) = {(di,da,...,dk)| didz---dx =n}
Sk,j(n) = {(dl,dz,. 26 ,dk)l d1d2 . --dk =— ’n,d]‘ > 1}, j = 1,2, - ,k.
Then

k
A(n) = card () Se(n))
Jj=1
By the inclusion-exclusion principle

Ak (n) = card (Sk(n Z Z card (Sk,jl (n)N---N Sk (n)),

1<j1<"‘<ji§k

where S j(n) is the complement of Sk j(n) in Sk(n). We thus obtain

k
Ag(n) = Z ( )Tk i(n)
o

)Tk i

This completes the proof of Theorem 3.3.
Corollary For k>0

= [k
Tg(n) = Z <Z>A,(n), n>1. (3.3)

Proof Application of the classical binomial inversion formula (see [1, p. 96]) to
(3.2) gives (3.3). O
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Theorem 3.4 We have

X(n) k (k
pln) =3 (—1)’“2(—1)’(.>Tk—i(n), n>1. (3.4)
k=0 i=0 ¢
If the canonical representation of n is n = ﬁ p?j, then
=1
Q) Rl e\ oy (ot k—i— 1
p(n) = (=1 (-1) ; II o , n2>2, (3.5)
k=1 i=0 j=1 i

where Q(n) = a1 +ag + -+ + ay.

Proof Equation (3.4) follows from (3.1) and (3.2). Equation (3.5) follows from
(3.4) and the property 71(p®) = (a+’f—1). 0

«a

Remark From (2.5) and (2.6) we obtain the expressions

1100 0
1110 0
p@") = (=1)"det P :
1111 -1
1111 -1

k=1 i1tigt-tig=n
i1yi s >0
n k n—1
= Z(_l) E—1
k=1

_ -1 ifn=1,

N 0 ifn>1
Remark Jagannathan [3] has given Equations (2.3), (2.4), (3.1), (3.3) and (3.5)
without proof.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.

[2] M. G. Beumer, The arithmetical function 74x(N), Amer. Math. Monthly 69
(1962) 777-781.

[3] R. Jagannathan, A matrix approach to certain number theoretic problems, in
Proceedings of the Conference on Matrix Algebra, Computational Methods and
Number Theory (Mysore, 1976), Matscience Report 87, Institute of Mathemat-
ical Sciences, Madras, 1977.

123



[4] G. Pélya and G. Szeg6, Problems and Theorems in Analysis, Vol. II, Springer-
Verlag, 1976.

[6] J.-C. Puchta and J. Spilker, Faltungen von vollstandig multiplikativen Funktio-
nen, Arch. Math. 65, No.6 (1995), 516-523.

[6] W. Schwarz and J. Spilker, Arithmetical Functions, London Mathematical So-
ciety Lecture Note Series 184, Cambridge University Press, Cambridge, 1994.

[7] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Monographs
and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker,
New York, 1989. '

[8] R. Vaidyanathaswamy, On the inversion of multiplicative arithmetic functions,
J. Indian Math. Soc. (Notes & Questions) 17 (1927), 69-73.

AMS Classification: 11A25

124



	NNTDM-6-4-118
	NNTDM-6-4-119
	NNTDM-6-4-120
	NNTDM-6-4-121
	NNTDM-6-4-122
	NNTDM-6-4-123
	NNTDM-6-4-124

