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ABSTRACT

The Cardano cubic, y* — 6pgy — 3pq(p + q), p,q € Z4, has one real zero and a complex
conjugate pair. The real zero is given by 2(2pq + e)% or (E + 2)(2pq)%, in which e, E are
important parameters that feature in the roots of all Cardano cubics. They are functions
of the coefficients of the complex conjugate pairs. We find that
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with R=2 = h(6) and 11° < 6 < 60° for real zero. Futhermore, for E integer, the range of
q

E

Il

0 is reduced to 52° < 6 < 60°, where the functional surfaces suggest the reason the integer
E would only be compatible with an irrational value of R. This is verified algebraically.

1 INTRODUCTION

We have recently presented the Cardano family of Equations [2] in which the member of lowest
degree, the cubic is given by the canonical form

y> — 6pgqy — 3pg(p + q) = 0, (1.1)

p,q € Z,. For an extensive study of the coefficients of the Cardano cubic, when all roots are
real, the interested reader is directed to [1].

The higher family members are consistent with the cubic in that they have only one real
root (n odd) or two (n even) and complex conjugate pairs. The real roots have the forms

(n —1)(2pg + e)% and, additionally, —(2pq + d)% when n is even. The positive root may
also have the form (E +n — 1)(2pq)%. The parameters e and E are always non-integer when
p,q € Zy [2] and are functions of the complex conjugate pair.

The purpose of the present paper is to analyse e and F in the cubic case, principally in relation
to the trigonometric functions associated with the complex conjugate pair.



2 THE PARAMETER e

As shown previously [2], from the theory of equations and with the complex conjugate pair of
Equation (1.1) given by (a =+ bi),

b2
= = 2.1
o= (2.1)
and e =a’ — 2pq, (2.2)
so that
2 2
a” + b =4e + 2pq (2.3)
or a? 4+ b? = 4a® — 6pq. y (2.4)

As well, from the theory of complex numbers,
a=rcosf (2.5)
b=rsinf (2.6)
which yield
r? = a? + b?

From Equation (2.4)

r? = 4r? cos® 0 — 6pq (2.7)
so that
bpq
2 _
" T Tco26-1 2.8)
From Equations (2.3) and (2.8),
_ 2pq(1 — cos? §) 2pq (2.9)

4cos?0—1  3cot?6—1

and so on. Since p and g can have multiple values for constant pg, we use R = 1—), with p < q,
q
0 < R < 1. Thus

. 2¢°R tan® 6

3 —tan26 (2.10)

Obviously, there are constraints on 6 since the denominator in Equation (2.8) is zero for

0 = %, n € Z, n [3. It follows that

_48-4Q

=70

1 (2.11)

with

114



-

Q = {6(24 - £(0))}°

and

£(8) = cos? 6(3 — tan? 0)3.

Thus e is now a function of ¢ and 6 only. Since f(0) < 24 for a real non-zero solution of @,
0 > 11.266345° is another constraint on 6.

Finally, we can express
e=q*F(0) (2.12)
with

_ 8tan?0(12-Q)  2tan’f
S F(6)(3 —tan%0) 3 —tanZf’ (2.13)

Since g can have any integer value, F'(6) must always be irrational for p,q € Z_, since the
rational root of equation (1.1) is always non-integer [2].

If we differentiate F'(0) with respect to 6 in Equation (2.13), then we find that

dF 1dR 6sec? 0
= S 1
a =T {R 30 " Tan0(3 — tan? 9)} (2.14)
with
1 dR —24cosfsinf(8cos? 6 + 1)
St - (2.15)
R df cos? 6(3 — tan? 6)Q
At stationary point of F
1 —6sec? 0
b R (2.16)
R d#  tan(3 — tan“0)
so that Equation (2.14) reduces to the following quartic in cos? 6:
704 cos® @ — 1040 cos® 0 + 228 cos” § + 109 cos? § + 8 = 0. (2.17)

This gives values of 8 as 12.059493°, 28.791636°. As well, a stationary point might be expected
to occur when F'(f) = 0, that is for & = 60°, but this is outside the range because the
denominator in Equation (2.13) is then zero.

e may be expressed as the reduced cubic [2]:

3 — (%(PQ)2> s+ G(pq)3 - 69—4(pq)2(p + q)2> =0 (2.18)
2pq

ith s = e + pg. Substituti = —
with s e+ pq ituting e Toor20 =1

t =1+ 2cos 26, we obtain

from Equation (2.9), and simplifying with
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B +Pt+Q=0 (2.19)

—24 -2
where P = Q = v +f1);12 = R _:111%)2 This yields 6 as a simpler function of p,q. If 27Q? +

4P3 < 0, Equation (2.19) has three real roots; otherwise it has one real root and a complex
conjugate pair. Since P = Q, the parity of 27(p? + ¢%) — 42pq will indicate the types of roots.
Since

27(p* + ¢*) > 21(p* + ¢*) > 42pq,

there will only be one real root for t. When R = 1, we find § = 11.266345° in Equation (2.19),
and when R = 0, 8 = 60° as before.

3 THE PARAMETER E

The trigonometric function for F is

p=2{(5=Lmp) -1} 3.1

in which the constraints for 6 are the same as for e, namely 11.266345° < 8 < 60°. Since F =1
when 0 = 52.238756°, there is only a relatively small range for # where F is an integer, namely,
52° < 6 < 60°. However, even within this range, since yo ¢ Z when p,q € Z,, (2pq)% ¢ Z,
when E € Z. The curve for 6 versus In E resembles a distorted tanh z curve, with z = In F,

that is,

2
tanhz =1 - —————«—— 2
anhz =1 exp(2InE) + 1 (32)

with 8 = 11° and 60° as its asymptotes.

For the range of interest of 8, namely, 52° — 60°, tanh  is linear in 8 so that € can be replaced
by the hyperbolic function in this range. It is also of interest to note that R = 0 at 6 = 60°
and R =1 at 0 = 11.266345°.

Another feature of E is that the surface defined by (0, R, E) is elliptical for # > 50°. One
would expect that all the integer points for E on this surface would be associated with irra-
tional values of R. Using Equations (2.11) and (3.1) we get

1

4 912
R+1=59(s" - 3) {g<g2 A GEE } (33)
where g = E +2. Table 1 lists values of E and the corresponding 6 and R values. By E = 10, 6
has already reached 59.65°. Thus, between 59.65° and the limit 60° an infinity of integer values
for E can be fitted in, since even at E = 1000 the angle differences with 60° are extremely small.

Equation (3.3) has two opposing components with g(g2 — 3) tending to infinity as the other

approaches zero. This increases errors in the estimate. However, Equation (3.3) may be
expressed as

9 (R + %) =8 (g(¢* - 3))2 — 18, (3.4)
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Table 1

E 1 2 3 4 ) 6 7

0  52.238756 56.309932 57.791501 58.517846 58.932547 59.193019 59.367827
R* 0.0034967 0.0004171 0.0001040 0.0000443 0.0000776 0.0000443 0.0001784
R* 0.0034967 0.0004164 0.0000937 0.0000287 0.0000109 0.0000047 0.0000023

E 8 9 10 100 1000 5000

0  59.491041 59.581247 59.649318 59.995230 59.999951 59.999998
R* 0.0000743 0.0012481 0.0026416 ~0 ~0 ~ 0
R** 0.0000012 0.0000007 0.0000004 ~0 ~0 ~ 0

* R values from Equation (3.3),
+x R values from Equation (3.4).

so that if g € Z, then (R + %) € Z or have a denominator equal to 3 or 9. If R € Q with
R———Q,n;ﬁm, then
m

1 (n+m)?
o s 2 el o D, .
R+R o (3.5)

Since n # m, the right hand side of Equation (3.5) can never be an integer in this case. Thus
R cannot be a rational fraction and is irrational whenever E is an integer. If R has 3 or 9 as
denominator, then g(g? — 3) will not be an integer.

For alternative approaches to the treatment of Cardano’s solution of the cubic, the reader is
referred to the classic exposition of Turnbull [3].

Gratitude is expressed to Dr C.K. Wong of University of Technology, Sydney, and Prince of
Wales Hospital, Randwick, for technical assistance and advice.
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