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Enumeration of integer k-gons with perimeter n
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Abstract

We consider the following enumeration problem : how many are there
"distinct” k-gons with integer sides and perimeter n. A solution is known
for k = 3 when “distinct” means "non-congruent” . This does not hold in
the general case since for £ > 3 a k-gon is not uniquely determined by
its side lengths. We define the concept "distinct” in an appropriate way
and reduce the problem to an enumeration of all distinct integer labels
on the sides of a fixed regular k-gone satisfying a given condition. This
enumeration can be done by the well known Polya’s Theory of Counting.
The simple structure of the considered objects (a regular k-gon and the
dihedral group of order k) allows us to prove our results in an alternative
way using only elementary concepts and techniques from Group Theory
and Number Theory.

1 Introduction

In this paper we consider the following enumeration problem :

Find T'(k,n), the number of all "distinct” k£ — gons,
having integer sides and perimeter n.

The simplest case, k = 3, is solved in [5]. An integer triangle with perimeter
n is uniquely determined by the triple (a,b,c) € Z3 of its side lengths (Z, is the
set of the positive integers). Such a triple must satisfy

a<b+cb<a+c,c<a+b at+bt+c=n
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and the triples (a, c,b), (b, qa,c), (b,c,a), (c,a,b), and (¢, b, a) are representations
of the same triangle. Therefore we obtain that

T (3,n) = l{(a,b,c) | (a,b,c) € Z3,a>b >, a<n——a}‘

which is an elementary enumeration problem.

The general case, i.e., for arbitrary k£ > 3 is not so easily solved. Since
a k-gon is not uniquely determined by its side lengths for k& > 3 we cannot
replace “distinct” with "non-congruent” as in the case £ = 3. That is why we
need a reasonable definition of this concept. We shall assume that two k-gons
P=PP,...P,and Q@ =Q,Q,...Q are non-distinct iff 1, 2 or 3 holds:

1. There exist a congruence that maps P onto Q.

2. |PjPj;1| =|Q;Qj+1| for every j =1,2,.. .k (setting Pryy = P, and Qgq1 =
Q1)

3. There exists a k-gon R such that P and R are non-distinct by 1 and R and
Q are non-distinct by 2

Of course, we shall assume that two k-gons are distinct iff they fail to be non-
distinct.

This definition of the concept "distinct” allows us to obtain a bijection between
all distinct k-gons and all distinct labels o = (2, 2y,...2;) on the sides of a
fixed regular k-gon satisfying the condition

k
0L e < Z :Ei:z:ni—:cj forj=1,2,...k

1<i<k, i#] i=1

(assuming that two labels z' and z" are distinct if there exists no congruence ®

mapping the regular k-gon onto itself and such that ® (:z:') =1 ). The bijection
is defined as

Plpg...Pk_lpk(—')(’PLP2|, ‘PZI):}ia---[PkflPk’, ‘Pkpll)

(in Figure 1 the pentagons P, Q and R are non-distinct - P and R by 1, P and
Q by 2, @ and R by 3. The regular labelled pentagon A is bijective to all of
them).
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Thus we reduce our problem to the following :

Find T'(k,n), the number of all distinct integer labels
on the sides of the regular k£ — gon, satisfying the conditions :
l1<zj<n-—gjforj=12,...kand 37 z; =n.

The latter problem can be solved directly by the well known Pélya’s Theory of
Counting - [6], [1]. There exists a standard way to prove the Pélya’s theorem or
some of its generalization and it is presented in [2]. We preferred to propose in
section 2 an alternative method of counting. It takes advantage of the structure
of the considered objects (a regular k-gon and the dihedral group of order k) and
uses only the simplest concepts and techniques from Group Theory and Number
Theory. It allows us to solve not only our problem (as it is done in section 3)
but some other problems that can be reduced to the enumeration of all distinct
labels on a regular polygon. We hope also that the proposed technique can be
successfully applied to enumeration of other combinatorial objects.

2 Main result

Let P = P\P,... Py be a fixed regular k-gon and C be a given finite subset of
Z*, where Z is the set of the integers. We shall consider an arbitrary element
T = (T1,%s,...2%) of C as alabel on P : for every j = 1,2,...k the side P;P;,
is labelled by z; (setting Py,; = P,). We shall assume that two labels ' =

n "

’ ! ! " " . 3 . .
(ml, By + + xk) andz = (331 s Doy y v .xk) are distinct if there exists no congruence

® mapping P onto itself and such that & (.L') 2 (<I> (:L",) , P (x;) ) (33;;)) =
T

Our main problem is to find n (C) - the number of all distinct labels from
C. For this purpose we shall present this number in an appropriate form. To
do this, we shall assume that C is symmetric with respect to P, i.e., for every

congruence ® mapping P onto itself from = € C' it follows that ® (z) € C, too.
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Let us denote by G the group of all congruences of the regular k-gon and let
G1,Go, ... Gy be all its subgroup. Let

Ci={z|z€eC,VPegG :z=70(z)}
for every 1 =1,2,...m and
g:z::{q)'(l)egv .’L':(I)(IL')}

for every z € C, i.e., G, is the maximal subgroup of G that maps z onto itself.

It is easily seen that every label z from C has |G|/ |G,| non-distinct repre-
sentatives in C - this is exactly the number of the coclasses in G generated by G, .
Therefore we can rewrite n (C) as follows

G|

n(C)=>_ IR

zeC

(1)

On the other hand, let us suppose that n (C) can have representation of the form

m

n(C) = Zgi |C|, (2)

1=1

where g¢;, 7 = 1,2,...m are some numbers (so far unknown).
Comparing the coefficients corresponding to an arbitrary € C in the right
sides of (1) and (2) we obtain

Gl _ 5y, )

|g! - giggw

since all subgroups of G mapping z onto itself are just all subgroups of the max-
imal one which is G,. There are no more than  equations of the form (3) - the
subgroup G, in the left side is some of G, G,,...G,,. Thus we obtain a linear
system with unknown quantities g1, go, ... g, If it has an unique solution (this
would prove our assumption that n (C) can be represented in the form (2)) that
can be found explicitly and if this holds for all |C;|, ¢ = 1,2,...m as well, then
the value of n (C) might be calculated from (2). In fact we can get these values
by Mobius Inversion Technique (see e.g. [3], 12.7) but we prefer the simple way
described further.

Let us note that the above considerations remain correct for an arbitrary
object P with its group of symmetries G. Now we shall concentrate on the case
when P is a regular k-gon and G is the dihedral group of order k.

It is well known that G is generated by its elements p - a rotation at 27/k
and o - symmetry with axis OA; , where O is the centre of P- see Figure 2. So,
we have

G={e,p', 0% ...05" 0,00, %, .. 0" "o}
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(see Figure 3).

g pod po
Figure 2 Figure 3

The subgroups of G are

Rd = {G,Pdap2d> # ~P(§‘I)d} )

for all d|k and

k_1

for all d|k, 0 <i<d-1.

It is important to observe that Ry = S1 o = G, Ry = Sa1, So9 = G (if Sz
and Sy exist i.e. k is even) and all other R,’s and Sy;’s are distinct. So, (2)
becomes

n(C)=> rqlRe+ > i: 84 |Sagl (4)

dlk dlk, d>2 i=0

where
Ri={z|z€eC, VP eRy:z=(x)}

for d|k and
Sii={z|zeC, VP €Sy :2=2(z)}

for dlk, 0 < < d—1and ry’s, sq;’s are unknown coefficients.
We shall describe for every subgroup of G its subgroups and its rank :

o for Ry, d|k, they are R;, d|jlk. |Rqy| = %;

o for Sy;, dlk, 0 < i < d—1, they are R;, d|jlk and Sjiya, d|jlk, 0 <1<
1-1. |8 =%

Thus the system of equations of the form (3) becomes

1
3 Ty > dlk,d > 2 (5)
dljlk
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ZTJ+ZZSJ,z+dl dk, d>2,0<i<d-1 (6)
dljlk dlj|k 1=0

Z r; + Z Z Sji42 = 1 iff k£ is even (7)

2|7k 25|k, 7>2 1=0

dorit Y ]isj,zzl (8)

Jlk jlk, j>21=0
We shall prove the following lemma

Lemma 2.1 The linear system (5), (6), (7), (8) has an unique solution Ty =
chp( ) for dk; si; = k for 0 <1 <k —1 and all other variables are zeros.

Proof Let us remind the definition of the function ¢ : if n = H p;* is the

n nL

canonical representation of n then ¢ (n) = H (pz i ) We shall use also in

the function 7 (n) Z Mg

First we shall prove the uniqueness of the r;’s, s4,’s and that s;; = 0 for
2<d<k usmg a limited induction on 7 ( ) Ifr ( ) =0 then d = k.From (5)
we obtain r; = ;- and from (6) follows that s;; = + — rp = 5 for 0 < i<k-1.
Let us suppose that the assertion is true for all d such that 7 ( ) < 19. We shall

prove it for every dy with 7 (—) = 1. To do this we must consider the following

d
three possible cases (having in mind that from dy|j, j > dy it follows 7 ( ) < 1p)

1. (a) do > 2. From (5), we have
1
Tdy = 57~ r
2do doljlk, 5> do

and from (6) and (5)

L ——1
1 y
Sdo,i = d_ - Z Tj - Z Z Sji+dol — Z Sk Ji+dol —

0 do|jlk do|jlk,do<j<k 1=0
1 _ 1 ko1
% - —270 - Z Z Sjyitdol — l 2k

doljlk, do<j<k 1=0

-
- > > Syt =0

dolj|k,j>do>k 1=0
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2. (b) dy = 2 .This is possible iff k£ is even. From (7) we have

L

1

T2=§— Z I3 — Z Z%Hzl“zsklwz—
25lk,5>2 215k, 2<j<k 1=0
1 k11
57 2 n0-ggp= T X
2|jlk,5>2 2|jlkj>2

3. (c) dp = 1. From (8), we have

i1 k=1
Z Ti — Z Zsj,1+‘zl—zsk,l=
=0

lk,5>1 jlk,2<j<k 1=0

- > ri—0-k ~ 2 Ty

Jlk,3>1 Jlk,g>1

lolr—-*

I/\

¢ < k—1 and all other s4;’s are
b) and (c) to (5) we obtain also

Thus we have provednthat s;; = 5 for 0
zeros. Adding the equations from the cases

Z’J“

dljlk

—~

l —

(9)

[\
&~

C

for all d|k.
Now we shall show that ry = ﬁcp (E) Let us fix d and let &k = ﬁ Pfi and

d= H p;* be the canonical representations of £ and d. We define the function

i=1

m

f (2,22 .. 2m) defH (1+ Z ( b pl- 1)7f>

Rewriting f (21, 22, . .. 2;,) as a sum of monomes we see that the coefficient of the

term 2122 ... zbm is just ¢ (plllpf} . .pﬁ;’;). We observe also that there exists bi-

m 5
jection between integer numbers j such that d|j|k (or equivalent j = [] p¥, d; <

1=1 -
ji < ki, 1 < i < m) and monomes of the form z\'z% . .. Zm 0<L; <ki—d;, 1<
1 < m defined as

p]l .72 m. 3 Z{CI —Ji kZ —J2 ,,km*jm
ce A .

’" 1
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So, we have

f@,1,...1) = > cp(p’f‘ kI ph ]) 290(])

di<ji<ki,1<i<m dljlk

On the other hand
ki—d; m i /C
st =+ 2 st ) =Tt =

and consequently we obtain that

Zeli)a e Rae(l) -

dljlk dljlk

for every d, d|k. But the r;’s satisfying the equations (9) are unique, so it follows

_ 1. (k
that 4 = %o (£).0 |
Now we are able to prove our main result.

Theorem 2.1 Let the set C C Z_’i define a label over the sides of the reqular k-
gon P and C be symmetric with respect to P. The number of all distinct elements
from C 1s

1 ra
Z*"( )'Rd’+{ i‘(]sélmsl}) b
where
Ri={zeClz= (21,22, . . TagyT1, T2y Tdyvvnv...Ti,T2y...Tq)}
for all d|k and
So={z€Clz=(z1,22,%3,...23,22,21)}
Si={z€Clx=(z1,20,T3,21...24,23,Z2)} .
Proof From lemma 2.1 and (4) we obtain
1 k=l
Z@( >‘Rd|+2/v21qm :
kg i
So let us consider the S ;’s
Sk = {L |z €C, x=po (.’L‘)}
le.
Ski={z|reC, (z1,...Ti Tiz1,. .- T) = (T4, .. L1, Ty - - - Tig1) } -

We have one of the following two cases :
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1. (a) kis odd. Let us suppose that 7 is odd, too, and observe that z € Sy ; iff
p“'g_ (z) € Sk ie p~ %" defines a bl]ectlon between S| = Si; and Sy ;.If

1 is even this bijection is defined by p “5* But then we have

1k1

g 2 19k = g k18] = 5181

2. (b) k is even. In this case if 7 is even then p~% defines a bijection between
So = Sk, and S ;; if ¢ is odd then p‘”zi defines a bijection between S; = Sk ;
and Sy ;. Thus we obtain

1 %1 1

ZkZI il :_lc > lsml‘f'z/ > |Sk.i| =
0<i<k—1, i 1S even 0<i<k—1, i is odd
1 1
2% 3 |Sk0| % * g IS“I (150|+\51|)-

O

3 The number of integer k-gons, having perimeter
n

According to theorem 2.1, we need the values of |Sy|, |S\| and |Ry| for all d, d|k,
where

k
0 = {:E |z € Z_kH in =n, £; <n—uz; forall i = 1,2,...n}

(here Z is the set of the positive integers).
We shall use the following two elementary assertions :

e (a) The number of all vectors z € Z* such that Y5 | z; = n is (Z:i)
b,
_ (b+1 :
e (b) jga (i) = (k+1) (k+1) holds for every £ > 0 and b > a — 1.

Let d is such that d|k, d < k. We have

k d
Ri={z|z€ZX z=(1,...20,21, . . T4y ........¢1,...24), EZ:L’,'ZTL}
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(note that the condition z; < n — z; for all 7 follows from the others). Using (a),

we obtain )
5k k|,
Ry={ () i
0, otherwise

Let d = k. In this case R; = C and

k n—k+1 k
C={x|xEZi,in=n}\ U {x]xEZi,Z:L'i:n,ﬂj:szp}.
=1 ’

5]

We observe that all sets in the union are disjoint and that the index j can take
just k values - from 1 to k. So, we have (using (a) and (b))

= (20) (77 ) - () (),

Let us compute |Sy|. We shall consider two cases :

e k is even. Then

k
3
k T — —
So=<z|zeZi, z= (iEl,Iz,...,IL%,.L%,....LQ,.L]), 2) m=n
=1
and it is easy to see the bijection between |Sy| and |R& , SO
2
(g_l) n 1S even
2 s
|So| = 217 . .
0, n is odd
e k is odd. In this case
k=1
2
So= xéZﬁ|$= (a:l,...:c:ﬁ_l,...:m% Lkt +22:Bi=TL, Thtl < T — Thtl
2 2 : 2 2
=1

k=1
If we denote p = ;% z; then from z € Z* it follows that p > %% and

n—2p > 1. From Tepr <M= Tipt follows 4p > n. So, we obtain
2

e I (e Wy

(we have used (a) and (b)).

b
—
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Finally we shall compute |S;|. Again we shall do this in two cases :

e k is odd. We have

k1
2
&= IEEZ_I,C_I]JZ(IE],.'EQ...:Ekizl,IIJkH ..‘.’L'g), Ty + 2 E Ti=n, 1 <N—2I
2
1=2

and the bijection between S; in this case and Sy when £ is odd is obvious,
) (T
n—1 n—3
_ 2 1
|Sl]_<k_—1>_<@_—_l>'
2 2

Sy = {:1: |z € Zfr, P = (Il,fljg...l’%_lflj%,ﬂ)%il...(Eg),

e k is even. In this case

k
L
T1+xe+2Y o xi=n, 1, <Nn—1I, Tk <TL—.’L‘&}.
2 2 2

k_
Let us denote p = Zi"’:zl Tiy § = Tk From o € Zf; it follows that p > % -1,
g>landn—2p—¢>1 Fromuz <n—wx and Te <M= Tk it follows
that 2¢ > n — 4p and 2¢ < n. Thus we have

|S1] = L%ZJ:_I <]£ B ;)q =

p=%-1 \2

L3 - n— T
> (i_;) (min (”‘2[)— 1,{ 5 1J> — max (l,[ ;11 —2p> +1)

and we obtain (after simplification, using (b))
1= (E - =) ()ncem o (P o ) (R

This completes our solution. Finally, we shall mention only that in the case when
k is and prime number, T'(k,n) accepts a very simple form :

o (7)) () - (D e
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4 Conclusions and open problems

In our paper we have obtained a closed form of the number of all distinct integer
labels on the sides of the regular k-gon satisfying a given condition. We have
proved our result independently from the Pélya’s Theory of Counting and we have
used only elementary concepts and techniques from Group Theory and Number
Theory.

Finally we shall set two open problems having an analogical formulation. We
hope that they can be solved by use of similar methods as in the present paper.

1. How many are there “distinct” polyhedrals, having
k vertices and integer edges with sum n?

and
2. How many are there "distinct” integer triangulations

of a k — gon with sum n?
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