NNTDM 6 (2000) 2, 64-68

ON A FORMULA RELATED TO THE n—TH PARTIAL SUM OF THE
HARMONIC SERIES
Mladen V. Vassilev - Missana
5, V. Hugo Str., Sofia-1124, BULGARIA

The harmonic series

1 1 1
I + 5 + g + s
has a remarkable property: for n > 1 its n—th partial sum
1 1 1
1 + ‘2‘ + ...+ E
is never integer. We may consider the more general series
1 1 1

1lp+1 + 2p+1 + 3p+1 T
(p is a positive real number) for which the above property is still valid, at least for the case
p=1,2,3,..., with respect to its partial sum
1 | 1

1+ < + sas F ————s
lp+1 2p+1 (n—1).p+1

Therefore, the question: “what does the integer part of the last partial sum equal to” s
reasonable (cf. [1,2]).
The present paper gives the answer of this question (see [3]), when n denotes the integer

part of the numbers
ek — 1

p
A wvery interesting fact is that the integer part of the mentioned partial sum, for such

+1 (k=1,2,3,..).

values of n, does not depend on p, but only on k.
below one may see the complete investigation.

Firstly, we shall introduce the following denotations: N - the set of all positive integers;
R* - the set of all positive real numbers; e = lim (1 + %)m = 2.718...; H, - the n—th
m—00

partial sum of the harmonic resies; [z] is the integer part of x, i.e., the greatest integer y for

whichy <z, whenz € R* orz=0; {z}=1z—[z].
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Definition 1. For p € R* and n € N we introduce Hy(p) by

Remark 1. Obuviously, H,(1) coincides with H, and for n > 3 we have:

1 1 1
H2)=1+-+-+...+ ——;
2) +3+5+ +2n—1

1 1 1
HQ3)=14+-4+-+... :
(3) —|—4+7+ +3n—2

1 1 1
H4)=1+-+-+..+ —;
4) +5+9+ +4n—3

and etc.
Definition 2. For k € N and p € R™ we introduce ni(p) by

ekr — 1

n(p) = | ]+ 1.

It 1s not difficult to prove the following
LEMMA The number ny(p) admits the representation

-, s {&7} < {4}
ny(p) = ) )
(S -L1+1, for (&} > {3}

Especially, for p > 1 (6) takes the form

27, for {8} < {})
ny(p) = )

1+, for {50 > {3}

Hence
nk(1) = [e¥].
The main result of the paper is
THEOREM For every k € N and p € R* the identity
1

+ ..+ =k,
1p+1 et? —1
[ 7 lp+1

1+

i.€e.,

® 1_
[an(;ﬂ)] =k,
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holds.

Remark 2. The theorem shows that the left hand side of (9) does not depend on p, but
only on k, which is very unezpected.

Proof of the Theorem Let p € Rt be arbitrary chosen.

1. Using that T
fl@) = (1+2)

is an increasing function on (0,400) and the fact that

lim f(z)=e
T—00
we obtain
i m+1
1+ ) P<e
m + 1—)
form=0,1,2,.... Hence
1 1
In(1 + 7) < i
m + 1_7 m —+ ]—9
The last inequality yields
1 il 1 1
—.(In(m+14+-).In(m+-)) < . 10
L n(m+ 1 ). n(m+ ) < (10)
Letn € N. We put in (10) m = 0,1,2,...,n — 1 and add the corresponding inequalities
to obtain ]
o In(n.p+ 1) < Hy(p). (11)
2. Using that
1
= (14+—)°
gl@) = 1+ ——)

is a decreasing function on (1,+00) and the fact that

lim g(z) =e
T—00
we obtain g
e<(1+ ————1)m+zl’.
m—1+ 1_7
form =1,2,.... Hence
1
T < In(1+ ———1)
m+p m—1+ D
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The last inequality yields

1 1 1 il
p—— < 1—).(ln(m+5) —In(m — 1—|—5)). (12)

Let n € N, n > 1. We put in (12) m = 1,2,..,n — 1 and add the corresponding

inequalities to obtain

n—1 1 1
< -.Inlhnp—p+1
- mp+1 p (np P )
Hence 1
H,(p) <1+ o In(n.p—p+1). (13)

3. Forn >1 (11) and (13) imply
1 1
= In(n.p+1) < Hy(p) < 1+ - In(n.p—p+1). (14)

Let k € N be fized and ni(p) be given by (5) (instead of (5) one may prefer (6), or (7)
when p > 1). Then it is easy to check the inequalities:

1
k< 2 In(p.ng(p) + 1); (15)
1
1+1—).ln(p.nk(p) —-p+1)<k+1. (16)
But obuviously we have
nk(p) > 1, (17)
because of the inequality
ef?>p+1

and (5). Then putting into (14) ni(p) instead of n and using (15) and (16) we finally obtain
k< an(p)(p) <k+1. (18)

But (18) means that (9) is true and the theorem is proved.
Corollary. For every k € N the identity

[Hiew] = k (19)

holds.
Indeed



(see Remark 1). Therefore (19) follows from (9) putting there p =1, because of (8).
In [1] another result related to the n—th partial sum of the harmonic series is proposed:

[Hy @y = k,

where

Finally we need two observations:
Observation 1. If p = 0 we define the left hand side of (9) as

il 1
[tim Ut

p—+0 p

)p+1

1.€., as
) 1 1
[ lim (1+W+...+m)}

p—+0

since :
s BP=—1
lim T k.
p—+0
Hence the left hand side of (9) equals to k + 1 when p = 0.
Observation 2. Here we put the question: when (16) is a pure inequality?

It is easy to see that (16) is an equality if and only if the condition

ekr — 1

p

eN (20)

is satisfied. But if p is an algebraic number, then the well known Lindemann’s theorem ([2],
Theorem 10.1) shows that (20) is not possible. Hence (16) is certainly a pure inequality if p

is an algebraic number.
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