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Abstract This article presents some new equations concerning the Euler function. An
equation for the sum 34, d* - ¢*(d) is found by using the multiplicative property. This is
applied to find the sums 3", (4,n)® and Y1, - (3,n)%

1.Introduction

The Euler function is considered to be one of the most important function in Elementary
Number Theory. This function has been intensely studied and many results have been pro-
posed so far. These results concern applications of the function in Combinatorics, Algebra,
Number Theory etc. In this condition, we may wonder if there still exists something new
about the function to be proposed. This article proves that it may exist some aspects of the
function that can be researched. In the following we will study the function in connection
to the sums Y7 ;(4,n)™ and Y.i- - (4,n)™.

A function f : N — N that satisfies (n,m) = 1 = f(m-n) = f(m) - f(n) is called
multiplicative function. It is known that if f : N — N is a multiplicative function, then
g: N — N,g(n) = X4y f(n) is multiplicative too [1,4] . The most important example of
multiplicative function is the Euler function defined by

@:N* = N,po(n)=#{i=1,n:(i,n) =1} (1)

This is certainly one of the most studied function of Number Theory, many mathematicians
have worked on it. Among the equations concerning ¢ proposed so far, the most simple and

interesting is
Y () =mn (2)
d|n
both from combinatorial and Number Theory point of view [1,4]. In the following, we will
generalise Equation (2) by considering 4, d* - ©°(d), which is a connection between the
function ¢ and the divisors of n.



we obtain from (*) the ordinary Fibonacci sequence: 0, 1, 1, 2,...
Therefore, the ordinary Fibonacci sequence can be represented by an A—progression.
We shall show that some of the generalizations of this sequence can be represented by an

A-progression, too. When a and b are fixed real numbers and f is a function defined by
F) =b—a, f2)=b, f(k+2)=f(k+1)+ f(k) +a,
we obtain from (*) the generalized Fibonacci sequence
a,b, a+0b, a+2.b, 2.a+ 3., ...
(see e.g. [2]). When a,b and c are fixed real numbers and f is a function defined by
f)=b-a, f2)=c—a, [B)=b+c

f(k+3)=f(k+2)+ f(k+1)+ f(k) + 2.qa,

we obtain from (*) the generalized Fibonacci sequence named Tribonacci sequence (see e.g.

[2]):
a, b,c,a+b+c, a+2b+2.c 2.a+3.b+4c,...

When a, b, ¢ and d are fixed real numbers, and f and g are functions defined by:
f(l)=—a+b, f(2)=—-a+c+d,

fk+2)=g(k+1)+gk)—a+2.c(k>1)
g(1)=—-c+d, g(2)=a+b—c,
gk+2)=fk+1)+f(k)+2.a—c(k>1)

we obtain from (*) the generalization of the Fibonacci sequence from [3]. When for the same
a,b,cand d
fQ)=—-a+b, f(2)=—-a+b+c,

flk+2)=fk+1)+gk)+c(k>1)
g(1)=—c+d, g(2) =a—c+d,
gk+2)=gk+1)+ f(k)+a(k>1)

we obtain from (*) the generalization of the Fibonacci sequence from [4-6].
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The idea for this short remark was generated by the Marchisotto’s paper [1]. Thus I
borrow the first part of its title and offer to all colleagues to prepare a series of papers under
the first part of this title.

Here we shall discuss an approach for an interpretation of the Fibonacci sequence as an
arithmetic progression. The reasoning for this is the fact, that there is a relation between
the way of generating the Fibonacci sequence and the way of generating the arithmetic
progression. On the other hand, obviously, the Fibonacci sequence is not an ordinary arith-
metic progression. Thus we can construct a new type of progression which will include both
the ordinary arithmetic progression, and the Fibonacci sequences (the classical one and its
generalizations).

Let f: N — R be a fixed function, where A/ and R are the sets of the natural and real

numbers, respectively, and a be a fixed real number. The sequence

a, a+ f(1), a+ f(2), ..., a+ f(k), ... (%)

we shall call A-progression (from “arithmetic progression”).

Obviously, if ay = a + f(k) is its k—th member, then

Y ag=Mn+1).a+ ¥ f(k).
k=0 k=1
When f(k) = k.d for the fixed real number d we obtain from (*) the ordinary arithmetic

progression.
When a = 0 and f is the function defined by:

FA) =1, f2) =1, f(k+2) = f(k+1)+ f(k) fork>1,



for which a simple proof is presented in the following. Let {i1,12,...,i4(n)} be the numbers
that are relatively prime to n. Based on {iy, s, ..., ipm)} = {n — 1,1 — 92, ..., " — Gy }, it
follows that

2- Z 1= Z i+ Z (n—1)=n-en).

i:l)_n’(i’n):]' izly_n7(i7n)=1 i:l,_n,(i,n)zl

Obviously, this equation does not hold for n = 1.
Proposition 3.3. If m # 0, then the equation
n nm+1 nm+1

Do (Hn)" = foma(n) +

i=1

holds.
Proof. Let I,, = {i = 1,n : (i,n) = d} be the set of indices ¢ that satisfies (i,n) = d.

Obviously, this set satisfies
(Vd|n) Ing =d - Iz . 9)
The sum Y7 ;% - (4,n)™ is transformed as follows:

n

Yoi-(Gn)mt=Yd" Y =) d"-d- ) i

1=1 dln 1€l 4 dln iEI%J

a3

Equation (9) gives Yier, @ = 'wz(%) for each divisor d # n. Applying this, we find
a’v

n n, n
o s g 200
i=1 n#£d|n 2

m—+1 —-m
_ ogmtl P E) . (E)
Wt 2 (d P\d/)

n#dn

Completing the last sum and changing the index sum, this becomes

n nm+1 nm—i—l
> i (4,n)™ =™ — 5 + 5 > dT o (d) =
i=1 d|n
nm+1 nm+1
= 2 + 2 ' f—m,l (n)

Thus, the proposition holds.

From Theorem 2.2 and Proposition 3.3, we find the following result.
Theorem 3.4. If n = p’f1 . p§2 ...-p¥s is the prime number decomposition, then the following

equation holds

n m+1 m+1 i1 |14+ ks - 1——17) =1
i+ (i,n)™ = n L n ; , ! [ 1z (p(1+ml;? 11k,~)_1 (10)
=1 2 2 i=1[1+(1“,,—i)'—‘—pwl—],m¢1

for any number m # 0.

Equation (10) gives the following particular equations:
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em=1=Y"i (i,n)="2+2 [ [1+k (1-2)].

o :_1:>Z7/1(1,’n)—l+%.l—[f:1 IJH‘l

5 = 3 3
em=22 S0 i (P =+ 5T (144 - ot ).

n

Z:i : (i’ n)m = 2 + 5 : Z(Z’ n)m (11)

For m = 1 this implies ;" , @ n) = % + % DL (Z ) that represents the equation between
the Tabirca functions [3,5].

In spite of the fact that the Euler function has been studied for a very long time, this
article has proved that it is still possible to find new facts about it. After a detailed and
careful investigation, we have found that Equations (5), (8) and (10) have not been probably
proposed until now. Therefore, we can consider that they are new equations concerning the
Euler function.
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