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Abstract The aim of this article is to propose some remarks on the Bernoulli numbers.
Firstly, a simple proof for the the equation Bg,4; = 0 is presented. This proof also gives
an equation for ((2k). Using a simple computation, the values of ((2k),k = 1,12 are
presented. Finally, an equation for the infinite product [T, I;LZ:;—} is proposed based on the
Bernoulli numbers.

Introduction

The Bernoulli numbers (B,),>oare important combinatorial numbers with many appli-
cation in Number Theory. Among several definitions of these numbers have been proposed
so far (see [2], [4], [5], [7]), we prefer the recursive one. The sequence of the Bernoulli
numbers (By)n>o is recursively defined by

By=1 (1)
=y () <2>

The main advantage of this definition is computablhty, which means that B, can be easier
found from By, By, ..., B,_1. Using these above equations and a simple computation, we can
easier find these number (see Table 1).
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Table 1 The Bernoulli numbers

There are several important results in Number Theory that involve the Bernoulli num-
bers. An interesting application to the computation of the sum -7, i* was recently proposed
by Bencze [2]. This results gives the equation
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What we want to point is that the Bernoulli numbers can be applied to find an equation for
something quite similar, the series ((2k) = Y ,50 n—zl,; Although this is an classical result,
we present a simplified proof for it. From this proof, we can obtain that Ba,41 = 0.

The Main Result

The harmonic series },,- nia is one of the most studied series, many results have been
proposed so far. This series is convergent for ¢ > 1 and its sum is given by the Riemann

function
> — =l
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For many reasons, it would be useful, to know the ((a) for all integers a > 2. These values
are known for even numbers, but unfortunately are not known for odd numbers. The only
important result concerning ((a) with a odd is that ((3) is irrational. This was a quite
long-standing conjecture that was proved by Apery in 1979 (according to Jones [5]). In
order to obtain the equation for ((2k), we use an simple way that was used by Apostol [1]
for ¢(2). A similar proof can be found in Jones [5].

We start from the infinite product expansion of sin 2
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which gives by taking logarithms
. Z
Insinz =Ilnz+ Z In (1 — -T—L2———> .
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We have by differentiating the last equation term by term the following equation

1 2. 2
cotz = - — T%(l_%) . (4)
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Now, we use the geometric series that gives
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and collect the power of z in Equation (4) obtaining
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This represents one final point in the expansion of cot z.
Now, we use the series expansion that gives the Bernoulli numbers [5], 7]
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The expression et%l is transformed as follows: -
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Putting z = ?—25 and based on ¢ - coti - x = cothz, we get
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This gives another final point of the expansion of cot z

B, r2
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Comparing the expansions from Equations (5) and (7), we find two important cases.

Case 1. If m = 2k — 1 > 1 then Z=.. (%) 2™~1 = 0 that gives Byx_; = 0. Moreover,
this result could be anticipated from Table 1.

Case 2. Ifm = 2k > 1 then

wrcen = (2)

(2k) = (123;’;!

Thus, we have obtained two important results, which are presented by the following theo-
rems.

Theorem 1. If n > 1 is an odd integer number, then B, = 0.

Theorem 2. The equation of the Riemann function for the even integer numbers 2k > 1

so that
. (_l)k—l . 22k—1 . 71_2/6'

is
By

Theorem 2 gives the equations for the first harmonic series with the odd integer power.
Using a simple computation, we have obtained the following equations.

. (_1)k—1 A 22k—1 . 7T2k. (8)
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The Computation of the Product [], g—z:;—i

An interesting agplication of the Bernoulli numbers is represented by the computation
of the product [T, z%—;}. This starts from the well-known equation [4], [5], [6]

MI—— =31 =¢e) (9)
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which connects the product over the set of prime numbers to the harmonic series. There are
several interesting problem concerning products over primes [3]. One of these asks to prove
that the product [J, ;;—;:% is rational. In the following, we propose an equation for proving

that.
Theorem 3. If £ > 1 is an integer number, then

ng_k;l__g B 1
P1 B O

p

(10)

The proof is based on Equation (9), which gives

2 2
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Putting in the last equation, the values of the Riemann function, we find
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By (21?2 By, 1

—_92. : Y ... IO
(B2k)?  (4k)! (Bax)* Ci
Obviously, the product I],, %z-,’:-;—} =-2. (—1%4:)—2 - gor is rational.
4k

Finally, we present some particular equations of (10).

Hp2—1““—2 B4 _];__2
S+ 1 (B)2 C; 5
Hp4—1—_2 Bg 1 _6
Spt+l (By)?2 C§ 7
Hp8—1__ Bis 1 7234
el G (Bg)2 C% 7293

Final Remarks

The Bernoulli numbers have proved to be important both in Combinatorics and Number
Theory. The article has proposed a simple proof for the fact that the Bernoulli numbers of
odd index are zero. This article has also given a simple proof for Equation (7) and presented
some particular equations for the harmonic series.

From space limitation reason, we have shown only the values of the Bernoulli numbers
for small values. Based on Equations (1)-(2), we can extend the computation for large values
of n.
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