SHORT REMARK ON NUMBER THEORY. I

Krassimir T. Atanassov

Centre for Biomedical Engineering - Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, BULGARIA e-mail: krat@bgcict.acad.bg

In this short remark we shall prove that

For all natural numbers $k \geq 1, m \geq 2$ at least one member of the set

$$S = \{m^1 - 1, m^2 - 1, m^3 - 1, ..., m^{m.k} - 1\}$$

is divisible by m.k + 1.

Let us suppose that no member of S is divisible by m.k+1. In this case, each of the m.k members of S must be congruent, modulo m.k+1, to one of the m.k nonzero remainders 1, 2, ..., m.k. By the pigeonhole principle, then, either:

(a) some two members of S are congruent to the same remainder, and therefore, to each other:

$$m^r - 1 \equiv m^s - 1 \pmod{m.k+1}$$

where r > s, or

(b) each of 1, 2, ..., m.k is congruent to different members of S.

In the event of case (a), we have

$$m^r - m^s \equiv 0 \pmod{m.k+1}$$

$$m^{s}.(m^{r-s}-1) \equiv 0 \pmod{m.k+1}$$
.

Since (m.k+1, m) = 1, the factor m^s does not contribute toward the satisfaction of the congruence, and it follows that

$$m^{r-s} - 1 \equiv 0 \pmod{m.k+1}.$$

But $m^{r-s} - 1$ is a member of S, and therefore, a member of S would be divisible by $m \cdot k + 1$, which is a contradiction with our assumption.

If (b) were to hold, then some members of S would be congruent to m.k and let it be a-th member, i.e.,

$$m^a - 1 \equiv m.k \pmod{m.k+1}$$
.

Therefore,

$$m^a \equiv m.k + 1 \equiv 0 \pmod{m.k + 1},$$

as obvious contradiction. The conclusion follows.

The above assertion is a direct generalization of a similar one from [1], where the case m=2 is discussed.

REFERENCE:

[1] Honsberger R., Mathematical Gems. III. Mathematical Assoc. of America, 1985.